Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer

The transfer printing method has drawn significant attention as a promising solution to overcome the limitation of substrate dependency in conventional microfabrication. However, several issues, such as pattern distortion, incompatibility of high-temperature processes, and low throughput, still pose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2024-01, Vol.7 (1), p.1019-1029
Hauptverfasser: Jang, Il Ryu, Yea, Junwoo, Park, Kyeong Jun, Kim, Uhyeon, Jang, Kyung-In, Kim, Namjung, Kim, Seok, Kim, Hoe Joon, Keum, Hohyun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1029
container_issue 1
container_start_page 1019
container_title ACS applied nano materials
container_volume 7
creator Jang, Il Ryu
Yea, Junwoo
Park, Kyeong Jun
Kim, Uhyeon
Jang, Kyung-In
Kim, Namjung
Kim, Seok
Kim, Hoe Joon
Keum, Hohyun
description The transfer printing method has drawn significant attention as a promising solution to overcome the limitation of substrate dependency in conventional microfabrication. However, several issues, such as pattern distortion, incompatibility of high-temperature processes, and low throughput, still pose challenges in achieving next-generation microfabrication. The present study utilizes graphene oxide (GO), with a thickness in the tens of nanometers, as the release layer to achieve stable, efficient, and highly scalable transfer printing. When an GO layer is exposed to the reducing agent, it undergoes the removal of existing functional groups, resulting in dimensional shrinkage and inducing microcrack formation. These microcracks serve as stress–concentration initiators between GO and the substrate, facilitating efficient exfoliation of the prepared layers above. The exceptional thermal stability of GO releasing layer allows the proposed method to be applied in transferring the high-temperature processed poly silicon and silicon dioxide patterns. Furthermore, the rapid processing time, confirmed through both experimental and numerical analysis, demonstrates a significant improvement in throughput compared to that of conventional transfer printing methods. Additionally, the proposed method involves a minimal aqueous process, effectively addressing pattern distortion issues in chemical sacrificial layer-releasing methods. The successful fabrication of a wearable resistance temperature detector embedded phototherapy device demonstrates the potential of the proposed method for advancing microfabrication techniques.
doi_str_mv 10.1021/acsanm.3c05028
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_3c05028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c870896028</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-c7bd2290b285290a8905ca83ef806acf3b548cf2e4c8f001897c00688a6dbdc73</originalsourceid><addsrcrecordid>eNp1UMFqwkAQXUoLFeu15z0XYicbk2yOIq0KKZai5zDZzOqKbmQ3lvr33aCHXnqZNzO895h5jD3HMI5BxK-oPNrjOFGQgpB3bCDSfBJBkcP9n_6RjbzfA0BcxFkCMGC7BXXk2i1Zas-ef2CYDB740na0ddiZ1vJvg3x67npSz1k7tF6T45_O2M7YLd_4viKfOzztghNf_ZiG-BcdCD3xEi_kntiDxoOn0Q2HbPP-tp4tonI1X86mZYRCFF2k8roJDdRCpgFQFpAqlAlpCRkqndTpRCotaKKkDn_IIlcAmZSYNXWj8mTIxldf5VrvHenq5MwR3aWKoeqjqq5RVbeoguDlKgj7at-enQ3n_Uf-BdMvbPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer</title><source>ACS Publications</source><creator>Jang, Il Ryu ; Yea, Junwoo ; Park, Kyeong Jun ; Kim, Uhyeon ; Jang, Kyung-In ; Kim, Namjung ; Kim, Seok ; Kim, Hoe Joon ; Keum, Hohyun</creator><creatorcontrib>Jang, Il Ryu ; Yea, Junwoo ; Park, Kyeong Jun ; Kim, Uhyeon ; Jang, Kyung-In ; Kim, Namjung ; Kim, Seok ; Kim, Hoe Joon ; Keum, Hohyun</creatorcontrib><description>The transfer printing method has drawn significant attention as a promising solution to overcome the limitation of substrate dependency in conventional microfabrication. However, several issues, such as pattern distortion, incompatibility of high-temperature processes, and low throughput, still pose challenges in achieving next-generation microfabrication. The present study utilizes graphene oxide (GO), with a thickness in the tens of nanometers, as the release layer to achieve stable, efficient, and highly scalable transfer printing. When an GO layer is exposed to the reducing agent, it undergoes the removal of existing functional groups, resulting in dimensional shrinkage and inducing microcrack formation. These microcracks serve as stress–concentration initiators between GO and the substrate, facilitating efficient exfoliation of the prepared layers above. The exceptional thermal stability of GO releasing layer allows the proposed method to be applied in transferring the high-temperature processed poly silicon and silicon dioxide patterns. Furthermore, the rapid processing time, confirmed through both experimental and numerical analysis, demonstrates a significant improvement in throughput compared to that of conventional transfer printing methods. Additionally, the proposed method involves a minimal aqueous process, effectively addressing pattern distortion issues in chemical sacrificial layer-releasing methods. The successful fabrication of a wearable resistance temperature detector embedded phototherapy device demonstrates the potential of the proposed method for advancing microfabrication techniques.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.3c05028</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2024-01, Vol.7 (1), p.1019-1029</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a229t-c7bd2290b285290a8905ca83ef806acf3b548cf2e4c8f001897c00688a6dbdc73</cites><orcidid>0000-0002-7236-7683 ; 0000-0002-2600-5921 ; 0000-0003-3206-8061 ; 0009-0000-3540-0029 ; 0000-0003-1180-7830 ; 0000-0002-4664-5029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.3c05028$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.3c05028$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Jang, Il Ryu</creatorcontrib><creatorcontrib>Yea, Junwoo</creatorcontrib><creatorcontrib>Park, Kyeong Jun</creatorcontrib><creatorcontrib>Kim, Uhyeon</creatorcontrib><creatorcontrib>Jang, Kyung-In</creatorcontrib><creatorcontrib>Kim, Namjung</creatorcontrib><creatorcontrib>Kim, Seok</creatorcontrib><creatorcontrib>Kim, Hoe Joon</creatorcontrib><creatorcontrib>Keum, Hohyun</creatorcontrib><title>Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>The transfer printing method has drawn significant attention as a promising solution to overcome the limitation of substrate dependency in conventional microfabrication. However, several issues, such as pattern distortion, incompatibility of high-temperature processes, and low throughput, still pose challenges in achieving next-generation microfabrication. The present study utilizes graphene oxide (GO), with a thickness in the tens of nanometers, as the release layer to achieve stable, efficient, and highly scalable transfer printing. When an GO layer is exposed to the reducing agent, it undergoes the removal of existing functional groups, resulting in dimensional shrinkage and inducing microcrack formation. These microcracks serve as stress–concentration initiators between GO and the substrate, facilitating efficient exfoliation of the prepared layers above. The exceptional thermal stability of GO releasing layer allows the proposed method to be applied in transferring the high-temperature processed poly silicon and silicon dioxide patterns. Furthermore, the rapid processing time, confirmed through both experimental and numerical analysis, demonstrates a significant improvement in throughput compared to that of conventional transfer printing methods. Additionally, the proposed method involves a minimal aqueous process, effectively addressing pattern distortion issues in chemical sacrificial layer-releasing methods. The successful fabrication of a wearable resistance temperature detector embedded phototherapy device demonstrates the potential of the proposed method for advancing microfabrication techniques.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMFqwkAQXUoLFeu15z0XYicbk2yOIq0KKZai5zDZzOqKbmQ3lvr33aCHXnqZNzO895h5jD3HMI5BxK-oPNrjOFGQgpB3bCDSfBJBkcP9n_6RjbzfA0BcxFkCMGC7BXXk2i1Zas-ef2CYDB740na0ddiZ1vJvg3x67npSz1k7tF6T45_O2M7YLd_4viKfOzztghNf_ZiG-BcdCD3xEi_kntiDxoOn0Q2HbPP-tp4tonI1X86mZYRCFF2k8roJDdRCpgFQFpAqlAlpCRkqndTpRCotaKKkDn_IIlcAmZSYNXWj8mTIxldf5VrvHenq5MwR3aWKoeqjqq5RVbeoguDlKgj7at-enQ3n_Uf-BdMvbPc</recordid><startdate>20240112</startdate><enddate>20240112</enddate><creator>Jang, Il Ryu</creator><creator>Yea, Junwoo</creator><creator>Park, Kyeong Jun</creator><creator>Kim, Uhyeon</creator><creator>Jang, Kyung-In</creator><creator>Kim, Namjung</creator><creator>Kim, Seok</creator><creator>Kim, Hoe Joon</creator><creator>Keum, Hohyun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7236-7683</orcidid><orcidid>https://orcid.org/0000-0002-2600-5921</orcidid><orcidid>https://orcid.org/0000-0003-3206-8061</orcidid><orcidid>https://orcid.org/0009-0000-3540-0029</orcidid><orcidid>https://orcid.org/0000-0003-1180-7830</orcidid><orcidid>https://orcid.org/0000-0002-4664-5029</orcidid></search><sort><creationdate>20240112</creationdate><title>Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer</title><author>Jang, Il Ryu ; Yea, Junwoo ; Park, Kyeong Jun ; Kim, Uhyeon ; Jang, Kyung-In ; Kim, Namjung ; Kim, Seok ; Kim, Hoe Joon ; Keum, Hohyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-c7bd2290b285290a8905ca83ef806acf3b548cf2e4c8f001897c00688a6dbdc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Il Ryu</creatorcontrib><creatorcontrib>Yea, Junwoo</creatorcontrib><creatorcontrib>Park, Kyeong Jun</creatorcontrib><creatorcontrib>Kim, Uhyeon</creatorcontrib><creatorcontrib>Jang, Kyung-In</creatorcontrib><creatorcontrib>Kim, Namjung</creatorcontrib><creatorcontrib>Kim, Seok</creatorcontrib><creatorcontrib>Kim, Hoe Joon</creatorcontrib><creatorcontrib>Keum, Hohyun</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Il Ryu</au><au>Yea, Junwoo</au><au>Park, Kyeong Jun</au><au>Kim, Uhyeon</au><au>Jang, Kyung-In</au><au>Kim, Namjung</au><au>Kim, Seok</au><au>Kim, Hoe Joon</au><au>Keum, Hohyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-01-12</date><risdate>2024</risdate><volume>7</volume><issue>1</issue><spage>1019</spage><epage>1029</epage><pages>1019-1029</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>The transfer printing method has drawn significant attention as a promising solution to overcome the limitation of substrate dependency in conventional microfabrication. However, several issues, such as pattern distortion, incompatibility of high-temperature processes, and low throughput, still pose challenges in achieving next-generation microfabrication. The present study utilizes graphene oxide (GO), with a thickness in the tens of nanometers, as the release layer to achieve stable, efficient, and highly scalable transfer printing. When an GO layer is exposed to the reducing agent, it undergoes the removal of existing functional groups, resulting in dimensional shrinkage and inducing microcrack formation. These microcracks serve as stress–concentration initiators between GO and the substrate, facilitating efficient exfoliation of the prepared layers above. The exceptional thermal stability of GO releasing layer allows the proposed method to be applied in transferring the high-temperature processed poly silicon and silicon dioxide patterns. Furthermore, the rapid processing time, confirmed through both experimental and numerical analysis, demonstrates a significant improvement in throughput compared to that of conventional transfer printing methods. Additionally, the proposed method involves a minimal aqueous process, effectively addressing pattern distortion issues in chemical sacrificial layer-releasing methods. The successful fabrication of a wearable resistance temperature detector embedded phototherapy device demonstrates the potential of the proposed method for advancing microfabrication techniques.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.3c05028</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7236-7683</orcidid><orcidid>https://orcid.org/0000-0002-2600-5921</orcidid><orcidid>https://orcid.org/0000-0003-3206-8061</orcidid><orcidid>https://orcid.org/0009-0000-3540-0029</orcidid><orcidid>https://orcid.org/0000-0003-1180-7830</orcidid><orcidid>https://orcid.org/0000-0002-4664-5029</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2024-01, Vol.7 (1), p.1019-1029
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_3c05028
source ACS Publications
title Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Material%20Integration%20via%20Autogenous%20Transfer%20Printing%20Using%20a%20Graphene%20Oxide%20Release%20Layer&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Jang,%20Il%20Ryu&rft.date=2024-01-12&rft.volume=7&rft.issue=1&rft.spage=1019&rft.epage=1029&rft.pages=1019-1029&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.3c05028&rft_dat=%3Cacs_cross%3Ec870896028%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true