Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer
The transfer printing method has drawn significant attention as a promising solution to overcome the limitation of substrate dependency in conventional microfabrication. However, several issues, such as pattern distortion, incompatibility of high-temperature processes, and low throughput, still pose...
Gespeichert in:
Veröffentlicht in: | ACS applied nano materials 2024-01, Vol.7 (1), p.1019-1029 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1029 |
---|---|
container_issue | 1 |
container_start_page | 1019 |
container_title | ACS applied nano materials |
container_volume | 7 |
creator | Jang, Il Ryu Yea, Junwoo Park, Kyeong Jun Kim, Uhyeon Jang, Kyung-In Kim, Namjung Kim, Seok Kim, Hoe Joon Keum, Hohyun |
description | The transfer printing method has drawn significant attention as a promising solution to overcome the limitation of substrate dependency in conventional microfabrication. However, several issues, such as pattern distortion, incompatibility of high-temperature processes, and low throughput, still pose challenges in achieving next-generation microfabrication. The present study utilizes graphene oxide (GO), with a thickness in the tens of nanometers, as the release layer to achieve stable, efficient, and highly scalable transfer printing. When an GO layer is exposed to the reducing agent, it undergoes the removal of existing functional groups, resulting in dimensional shrinkage and inducing microcrack formation. These microcracks serve as stress–concentration initiators between GO and the substrate, facilitating efficient exfoliation of the prepared layers above. The exceptional thermal stability of GO releasing layer allows the proposed method to be applied in transferring the high-temperature processed poly silicon and silicon dioxide patterns. Furthermore, the rapid processing time, confirmed through both experimental and numerical analysis, demonstrates a significant improvement in throughput compared to that of conventional transfer printing methods. Additionally, the proposed method involves a minimal aqueous process, effectively addressing pattern distortion issues in chemical sacrificial layer-releasing methods. The successful fabrication of a wearable resistance temperature detector embedded phototherapy device demonstrates the potential of the proposed method for advancing microfabrication techniques. |
doi_str_mv | 10.1021/acsanm.3c05028 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_3c05028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c870896028</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-c7bd2290b285290a8905ca83ef806acf3b548cf2e4c8f001897c00688a6dbdc73</originalsourceid><addsrcrecordid>eNp1UMFqwkAQXUoLFeu15z0XYicbk2yOIq0KKZai5zDZzOqKbmQ3lvr33aCHXnqZNzO895h5jD3HMI5BxK-oPNrjOFGQgpB3bCDSfBJBkcP9n_6RjbzfA0BcxFkCMGC7BXXk2i1Zas-ef2CYDB740na0ddiZ1vJvg3x67npSz1k7tF6T45_O2M7YLd_4viKfOzztghNf_ZiG-BcdCD3xEi_kntiDxoOn0Q2HbPP-tp4tonI1X86mZYRCFF2k8roJDdRCpgFQFpAqlAlpCRkqndTpRCotaKKkDn_IIlcAmZSYNXWj8mTIxldf5VrvHenq5MwR3aWKoeqjqq5RVbeoguDlKgj7at-enQ3n_Uf-BdMvbPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer</title><source>ACS Publications</source><creator>Jang, Il Ryu ; Yea, Junwoo ; Park, Kyeong Jun ; Kim, Uhyeon ; Jang, Kyung-In ; Kim, Namjung ; Kim, Seok ; Kim, Hoe Joon ; Keum, Hohyun</creator><creatorcontrib>Jang, Il Ryu ; Yea, Junwoo ; Park, Kyeong Jun ; Kim, Uhyeon ; Jang, Kyung-In ; Kim, Namjung ; Kim, Seok ; Kim, Hoe Joon ; Keum, Hohyun</creatorcontrib><description>The transfer printing method has drawn significant attention as a promising solution to overcome the limitation of substrate dependency in conventional microfabrication. However, several issues, such as pattern distortion, incompatibility of high-temperature processes, and low throughput, still pose challenges in achieving next-generation microfabrication. The present study utilizes graphene oxide (GO), with a thickness in the tens of nanometers, as the release layer to achieve stable, efficient, and highly scalable transfer printing. When an GO layer is exposed to the reducing agent, it undergoes the removal of existing functional groups, resulting in dimensional shrinkage and inducing microcrack formation. These microcracks serve as stress–concentration initiators between GO and the substrate, facilitating efficient exfoliation of the prepared layers above. The exceptional thermal stability of GO releasing layer allows the proposed method to be applied in transferring the high-temperature processed poly silicon and silicon dioxide patterns. Furthermore, the rapid processing time, confirmed through both experimental and numerical analysis, demonstrates a significant improvement in throughput compared to that of conventional transfer printing methods. Additionally, the proposed method involves a minimal aqueous process, effectively addressing pattern distortion issues in chemical sacrificial layer-releasing methods. The successful fabrication of a wearable resistance temperature detector embedded phototherapy device demonstrates the potential of the proposed method for advancing microfabrication techniques.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.3c05028</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2024-01, Vol.7 (1), p.1019-1029</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a229t-c7bd2290b285290a8905ca83ef806acf3b548cf2e4c8f001897c00688a6dbdc73</cites><orcidid>0000-0002-7236-7683 ; 0000-0002-2600-5921 ; 0000-0003-3206-8061 ; 0009-0000-3540-0029 ; 0000-0003-1180-7830 ; 0000-0002-4664-5029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.3c05028$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.3c05028$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Jang, Il Ryu</creatorcontrib><creatorcontrib>Yea, Junwoo</creatorcontrib><creatorcontrib>Park, Kyeong Jun</creatorcontrib><creatorcontrib>Kim, Uhyeon</creatorcontrib><creatorcontrib>Jang, Kyung-In</creatorcontrib><creatorcontrib>Kim, Namjung</creatorcontrib><creatorcontrib>Kim, Seok</creatorcontrib><creatorcontrib>Kim, Hoe Joon</creatorcontrib><creatorcontrib>Keum, Hohyun</creatorcontrib><title>Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>The transfer printing method has drawn significant attention as a promising solution to overcome the limitation of substrate dependency in conventional microfabrication. However, several issues, such as pattern distortion, incompatibility of high-temperature processes, and low throughput, still pose challenges in achieving next-generation microfabrication. The present study utilizes graphene oxide (GO), with a thickness in the tens of nanometers, as the release layer to achieve stable, efficient, and highly scalable transfer printing. When an GO layer is exposed to the reducing agent, it undergoes the removal of existing functional groups, resulting in dimensional shrinkage and inducing microcrack formation. These microcracks serve as stress–concentration initiators between GO and the substrate, facilitating efficient exfoliation of the prepared layers above. The exceptional thermal stability of GO releasing layer allows the proposed method to be applied in transferring the high-temperature processed poly silicon and silicon dioxide patterns. Furthermore, the rapid processing time, confirmed through both experimental and numerical analysis, demonstrates a significant improvement in throughput compared to that of conventional transfer printing methods. Additionally, the proposed method involves a minimal aqueous process, effectively addressing pattern distortion issues in chemical sacrificial layer-releasing methods. The successful fabrication of a wearable resistance temperature detector embedded phototherapy device demonstrates the potential of the proposed method for advancing microfabrication techniques.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMFqwkAQXUoLFeu15z0XYicbk2yOIq0KKZai5zDZzOqKbmQ3lvr33aCHXnqZNzO895h5jD3HMI5BxK-oPNrjOFGQgpB3bCDSfBJBkcP9n_6RjbzfA0BcxFkCMGC7BXXk2i1Zas-ef2CYDB740na0ddiZ1vJvg3x67npSz1k7tF6T45_O2M7YLd_4viKfOzztghNf_ZiG-BcdCD3xEi_kntiDxoOn0Q2HbPP-tp4tonI1X86mZYRCFF2k8roJDdRCpgFQFpAqlAlpCRkqndTpRCotaKKkDn_IIlcAmZSYNXWj8mTIxldf5VrvHenq5MwR3aWKoeqjqq5RVbeoguDlKgj7at-enQ3n_Uf-BdMvbPc</recordid><startdate>20240112</startdate><enddate>20240112</enddate><creator>Jang, Il Ryu</creator><creator>Yea, Junwoo</creator><creator>Park, Kyeong Jun</creator><creator>Kim, Uhyeon</creator><creator>Jang, Kyung-In</creator><creator>Kim, Namjung</creator><creator>Kim, Seok</creator><creator>Kim, Hoe Joon</creator><creator>Keum, Hohyun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7236-7683</orcidid><orcidid>https://orcid.org/0000-0002-2600-5921</orcidid><orcidid>https://orcid.org/0000-0003-3206-8061</orcidid><orcidid>https://orcid.org/0009-0000-3540-0029</orcidid><orcidid>https://orcid.org/0000-0003-1180-7830</orcidid><orcidid>https://orcid.org/0000-0002-4664-5029</orcidid></search><sort><creationdate>20240112</creationdate><title>Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer</title><author>Jang, Il Ryu ; Yea, Junwoo ; Park, Kyeong Jun ; Kim, Uhyeon ; Jang, Kyung-In ; Kim, Namjung ; Kim, Seok ; Kim, Hoe Joon ; Keum, Hohyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-c7bd2290b285290a8905ca83ef806acf3b548cf2e4c8f001897c00688a6dbdc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Il Ryu</creatorcontrib><creatorcontrib>Yea, Junwoo</creatorcontrib><creatorcontrib>Park, Kyeong Jun</creatorcontrib><creatorcontrib>Kim, Uhyeon</creatorcontrib><creatorcontrib>Jang, Kyung-In</creatorcontrib><creatorcontrib>Kim, Namjung</creatorcontrib><creatorcontrib>Kim, Seok</creatorcontrib><creatorcontrib>Kim, Hoe Joon</creatorcontrib><creatorcontrib>Keum, Hohyun</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Il Ryu</au><au>Yea, Junwoo</au><au>Park, Kyeong Jun</au><au>Kim, Uhyeon</au><au>Jang, Kyung-In</au><au>Kim, Namjung</au><au>Kim, Seok</au><au>Kim, Hoe Joon</au><au>Keum, Hohyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-01-12</date><risdate>2024</risdate><volume>7</volume><issue>1</issue><spage>1019</spage><epage>1029</epage><pages>1019-1029</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>The transfer printing method has drawn significant attention as a promising solution to overcome the limitation of substrate dependency in conventional microfabrication. However, several issues, such as pattern distortion, incompatibility of high-temperature processes, and low throughput, still pose challenges in achieving next-generation microfabrication. The present study utilizes graphene oxide (GO), with a thickness in the tens of nanometers, as the release layer to achieve stable, efficient, and highly scalable transfer printing. When an GO layer is exposed to the reducing agent, it undergoes the removal of existing functional groups, resulting in dimensional shrinkage and inducing microcrack formation. These microcracks serve as stress–concentration initiators between GO and the substrate, facilitating efficient exfoliation of the prepared layers above. The exceptional thermal stability of GO releasing layer allows the proposed method to be applied in transferring the high-temperature processed poly silicon and silicon dioxide patterns. Furthermore, the rapid processing time, confirmed through both experimental and numerical analysis, demonstrates a significant improvement in throughput compared to that of conventional transfer printing methods. Additionally, the proposed method involves a minimal aqueous process, effectively addressing pattern distortion issues in chemical sacrificial layer-releasing methods. The successful fabrication of a wearable resistance temperature detector embedded phototherapy device demonstrates the potential of the proposed method for advancing microfabrication techniques.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.3c05028</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7236-7683</orcidid><orcidid>https://orcid.org/0000-0002-2600-5921</orcidid><orcidid>https://orcid.org/0000-0003-3206-8061</orcidid><orcidid>https://orcid.org/0009-0000-3540-0029</orcidid><orcidid>https://orcid.org/0000-0003-1180-7830</orcidid><orcidid>https://orcid.org/0000-0002-4664-5029</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0970 |
ispartof | ACS applied nano materials, 2024-01, Vol.7 (1), p.1019-1029 |
issn | 2574-0970 2574-0970 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsanm_3c05028 |
source | ACS Publications |
title | Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Material%20Integration%20via%20Autogenous%20Transfer%20Printing%20Using%20a%20Graphene%20Oxide%20Release%20Layer&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Jang,%20Il%20Ryu&rft.date=2024-01-12&rft.volume=7&rft.issue=1&rft.spage=1019&rft.epage=1029&rft.pages=1019-1029&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.3c05028&rft_dat=%3Cacs_cross%3Ec870896028%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |