Multiscale Elasticity of 3D Boron Carbonitride Foam for Tunable Mechanical Resisting Devices

Boron carbonitride (BCN) foam is a three-dimensional material with a hierarchical structure, which has promising potential due to its semiconducting properties and high surface area. However, the lack of understanding of its elastic properties impedes its large-scale integration into advanced applic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2023-11, Vol.6 (21), p.19681-19688
Hauptverfasser: Jahn, Yarden Mazal, Levavi, Liat, Pradhan, Anway, Bar-On, Benny, Ya’akobovitz, Assaf
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19688
container_issue 21
container_start_page 19681
container_title ACS applied nano materials
container_volume 6
creator Jahn, Yarden Mazal
Levavi, Liat
Pradhan, Anway
Bar-On, Benny
Ya’akobovitz, Assaf
description Boron carbonitride (BCN) foam is a three-dimensional material with a hierarchical structure, which has promising potential due to its semiconducting properties and high surface area. However, the lack of understanding of its elastic properties impedes its large-scale integration into advanced applications. We grew BCN foam samples with different atomic compositions and studied their microscopic- and macroscopic-scale mechanics, which revealed that samples with high concentrations of carbon have lower elastic resistance across different scales (i.e., lower Young’s moduli). While the microscopic elasticity is dominated by interlayer interactions, the macroscopic elasticity is also strongly influenced by the buckling and fracturing of the three-dimensional structure of the BCN foam, and thus, the macroscopic Young’s moduli are lower than the microscopic ones. Our findings shed light on the mechanism that underlies the multiscale mechanics of BCN foam and pave the path toward its integration into tunable mechanical resisting devices such as flexible electronic devices and resonators.
doi_str_mv 10.1021/acsanm.3c03432
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_3c03432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c200804658</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-18cf110aac76929b8e56e1b4fa281233928424788f49c3095948944b55b2c37e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGqvnnMWtk4-tpsctR8qtAhSb8IyGxNN2SaS7Ar99660By-eZhje52V4CLlmMGXA2S2ajGE_FQaEFPyMjHhZyQJ0Bed_9ksyyXkHAEyzmQAYkbdN33Y-G2wtXbaYO298d6DRUbGg9zHFQOeYmhh8l_y7pauIe-piots-YDNAG2s-MfihgL7Y7IeC8EEX9tsbm6_IhcM228lpjsnrarmdPxbr54en-d26QM51VzBlHGOAaKqZ5rpRtpxZ1kiHXDEuhOZKclkp5aQ2AnSppdJSNmXZcCMqK8Zkeuw1KeacrKu_kt9jOtQM6l899VFPfdIzADdHYLjXu9inMLz3X_gHkbxmeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiscale Elasticity of 3D Boron Carbonitride Foam for Tunable Mechanical Resisting Devices</title><source>ACS Publications</source><creator>Jahn, Yarden Mazal ; Levavi, Liat ; Pradhan, Anway ; Bar-On, Benny ; Ya’akobovitz, Assaf</creator><creatorcontrib>Jahn, Yarden Mazal ; Levavi, Liat ; Pradhan, Anway ; Bar-On, Benny ; Ya’akobovitz, Assaf</creatorcontrib><description>Boron carbonitride (BCN) foam is a three-dimensional material with a hierarchical structure, which has promising potential due to its semiconducting properties and high surface area. However, the lack of understanding of its elastic properties impedes its large-scale integration into advanced applications. We grew BCN foam samples with different atomic compositions and studied their microscopic- and macroscopic-scale mechanics, which revealed that samples with high concentrations of carbon have lower elastic resistance across different scales (i.e., lower Young’s moduli). While the microscopic elasticity is dominated by interlayer interactions, the macroscopic elasticity is also strongly influenced by the buckling and fracturing of the three-dimensional structure of the BCN foam, and thus, the macroscopic Young’s moduli are lower than the microscopic ones. Our findings shed light on the mechanism that underlies the multiscale mechanics of BCN foam and pave the path toward its integration into tunable mechanical resisting devices such as flexible electronic devices and resonators.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.3c03432</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2023-11, Vol.6 (21), p.19681-19688</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a229t-18cf110aac76929b8e56e1b4fa281233928424788f49c3095948944b55b2c37e3</cites><orcidid>0000-0002-5836-0549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.3c03432$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.3c03432$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Jahn, Yarden Mazal</creatorcontrib><creatorcontrib>Levavi, Liat</creatorcontrib><creatorcontrib>Pradhan, Anway</creatorcontrib><creatorcontrib>Bar-On, Benny</creatorcontrib><creatorcontrib>Ya’akobovitz, Assaf</creatorcontrib><title>Multiscale Elasticity of 3D Boron Carbonitride Foam for Tunable Mechanical Resisting Devices</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Boron carbonitride (BCN) foam is a three-dimensional material with a hierarchical structure, which has promising potential due to its semiconducting properties and high surface area. However, the lack of understanding of its elastic properties impedes its large-scale integration into advanced applications. We grew BCN foam samples with different atomic compositions and studied their microscopic- and macroscopic-scale mechanics, which revealed that samples with high concentrations of carbon have lower elastic resistance across different scales (i.e., lower Young’s moduli). While the microscopic elasticity is dominated by interlayer interactions, the macroscopic elasticity is also strongly influenced by the buckling and fracturing of the three-dimensional structure of the BCN foam, and thus, the macroscopic Young’s moduli are lower than the microscopic ones. Our findings shed light on the mechanism that underlies the multiscale mechanics of BCN foam and pave the path toward its integration into tunable mechanical resisting devices such as flexible electronic devices and resonators.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGqvnnMWtk4-tpsctR8qtAhSb8IyGxNN2SaS7Ar99660By-eZhje52V4CLlmMGXA2S2ajGE_FQaEFPyMjHhZyQJ0Bed_9ksyyXkHAEyzmQAYkbdN33Y-G2wtXbaYO298d6DRUbGg9zHFQOeYmhh8l_y7pauIe-piots-YDNAG2s-MfihgL7Y7IeC8EEX9tsbm6_IhcM228lpjsnrarmdPxbr54en-d26QM51VzBlHGOAaKqZ5rpRtpxZ1kiHXDEuhOZKclkp5aQ2AnSppdJSNmXZcCMqK8Zkeuw1KeacrKu_kt9jOtQM6l899VFPfdIzADdHYLjXu9inMLz3X_gHkbxmeA</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Jahn, Yarden Mazal</creator><creator>Levavi, Liat</creator><creator>Pradhan, Anway</creator><creator>Bar-On, Benny</creator><creator>Ya’akobovitz, Assaf</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5836-0549</orcidid></search><sort><creationdate>20231110</creationdate><title>Multiscale Elasticity of 3D Boron Carbonitride Foam for Tunable Mechanical Resisting Devices</title><author>Jahn, Yarden Mazal ; Levavi, Liat ; Pradhan, Anway ; Bar-On, Benny ; Ya’akobovitz, Assaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-18cf110aac76929b8e56e1b4fa281233928424788f49c3095948944b55b2c37e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahn, Yarden Mazal</creatorcontrib><creatorcontrib>Levavi, Liat</creatorcontrib><creatorcontrib>Pradhan, Anway</creatorcontrib><creatorcontrib>Bar-On, Benny</creatorcontrib><creatorcontrib>Ya’akobovitz, Assaf</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahn, Yarden Mazal</au><au>Levavi, Liat</au><au>Pradhan, Anway</au><au>Bar-On, Benny</au><au>Ya’akobovitz, Assaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Elasticity of 3D Boron Carbonitride Foam for Tunable Mechanical Resisting Devices</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2023-11-10</date><risdate>2023</risdate><volume>6</volume><issue>21</issue><spage>19681</spage><epage>19688</epage><pages>19681-19688</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Boron carbonitride (BCN) foam is a three-dimensional material with a hierarchical structure, which has promising potential due to its semiconducting properties and high surface area. However, the lack of understanding of its elastic properties impedes its large-scale integration into advanced applications. We grew BCN foam samples with different atomic compositions and studied their microscopic- and macroscopic-scale mechanics, which revealed that samples with high concentrations of carbon have lower elastic resistance across different scales (i.e., lower Young’s moduli). While the microscopic elasticity is dominated by interlayer interactions, the macroscopic elasticity is also strongly influenced by the buckling and fracturing of the three-dimensional structure of the BCN foam, and thus, the macroscopic Young’s moduli are lower than the microscopic ones. Our findings shed light on the mechanism that underlies the multiscale mechanics of BCN foam and pave the path toward its integration into tunable mechanical resisting devices such as flexible electronic devices and resonators.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.3c03432</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5836-0549</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2023-11, Vol.6 (21), p.19681-19688
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_3c03432
source ACS Publications
title Multiscale Elasticity of 3D Boron Carbonitride Foam for Tunable Mechanical Resisting Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Elasticity%20of%203D%20Boron%20Carbonitride%20Foam%20for%20Tunable%20Mechanical%20Resisting%20Devices&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Jahn,%20Yarden%20Mazal&rft.date=2023-11-10&rft.volume=6&rft.issue=21&rft.spage=19681&rft.epage=19688&rft.pages=19681-19688&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.3c03432&rft_dat=%3Cacs_cross%3Ec200804658%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true