Multiscale Elasticity of 3D Boron Carbonitride Foam for Tunable Mechanical Resisting Devices
Boron carbonitride (BCN) foam is a three-dimensional material with a hierarchical structure, which has promising potential due to its semiconducting properties and high surface area. However, the lack of understanding of its elastic properties impedes its large-scale integration into advanced applic...
Gespeichert in:
Veröffentlicht in: | ACS applied nano materials 2023-11, Vol.6 (21), p.19681-19688 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19688 |
---|---|
container_issue | 21 |
container_start_page | 19681 |
container_title | ACS applied nano materials |
container_volume | 6 |
creator | Jahn, Yarden Mazal Levavi, Liat Pradhan, Anway Bar-On, Benny Ya’akobovitz, Assaf |
description | Boron carbonitride (BCN) foam is a three-dimensional material with a hierarchical structure, which has promising potential due to its semiconducting properties and high surface area. However, the lack of understanding of its elastic properties impedes its large-scale integration into advanced applications. We grew BCN foam samples with different atomic compositions and studied their microscopic- and macroscopic-scale mechanics, which revealed that samples with high concentrations of carbon have lower elastic resistance across different scales (i.e., lower Young’s moduli). While the microscopic elasticity is dominated by interlayer interactions, the macroscopic elasticity is also strongly influenced by the buckling and fracturing of the three-dimensional structure of the BCN foam, and thus, the macroscopic Young’s moduli are lower than the microscopic ones. Our findings shed light on the mechanism that underlies the multiscale mechanics of BCN foam and pave the path toward its integration into tunable mechanical resisting devices such as flexible electronic devices and resonators. |
doi_str_mv | 10.1021/acsanm.3c03432 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_3c03432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c200804658</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-18cf110aac76929b8e56e1b4fa281233928424788f49c3095948944b55b2c37e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGqvnnMWtk4-tpsctR8qtAhSb8IyGxNN2SaS7Ar99660By-eZhje52V4CLlmMGXA2S2ajGE_FQaEFPyMjHhZyQJ0Bed_9ksyyXkHAEyzmQAYkbdN33Y-G2wtXbaYO298d6DRUbGg9zHFQOeYmhh8l_y7pauIe-piots-YDNAG2s-MfihgL7Y7IeC8EEX9tsbm6_IhcM228lpjsnrarmdPxbr54en-d26QM51VzBlHGOAaKqZ5rpRtpxZ1kiHXDEuhOZKclkp5aQ2AnSppdJSNmXZcCMqK8Zkeuw1KeacrKu_kt9jOtQM6l899VFPfdIzADdHYLjXu9inMLz3X_gHkbxmeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiscale Elasticity of 3D Boron Carbonitride Foam for Tunable Mechanical Resisting Devices</title><source>ACS Publications</source><creator>Jahn, Yarden Mazal ; Levavi, Liat ; Pradhan, Anway ; Bar-On, Benny ; Ya’akobovitz, Assaf</creator><creatorcontrib>Jahn, Yarden Mazal ; Levavi, Liat ; Pradhan, Anway ; Bar-On, Benny ; Ya’akobovitz, Assaf</creatorcontrib><description>Boron carbonitride (BCN) foam is a three-dimensional material with a hierarchical structure, which has promising potential due to its semiconducting properties and high surface area. However, the lack of understanding of its elastic properties impedes its large-scale integration into advanced applications. We grew BCN foam samples with different atomic compositions and studied their microscopic- and macroscopic-scale mechanics, which revealed that samples with high concentrations of carbon have lower elastic resistance across different scales (i.e., lower Young’s moduli). While the microscopic elasticity is dominated by interlayer interactions, the macroscopic elasticity is also strongly influenced by the buckling and fracturing of the three-dimensional structure of the BCN foam, and thus, the macroscopic Young’s moduli are lower than the microscopic ones. Our findings shed light on the mechanism that underlies the multiscale mechanics of BCN foam and pave the path toward its integration into tunable mechanical resisting devices such as flexible electronic devices and resonators.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.3c03432</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2023-11, Vol.6 (21), p.19681-19688</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a229t-18cf110aac76929b8e56e1b4fa281233928424788f49c3095948944b55b2c37e3</cites><orcidid>0000-0002-5836-0549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.3c03432$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.3c03432$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Jahn, Yarden Mazal</creatorcontrib><creatorcontrib>Levavi, Liat</creatorcontrib><creatorcontrib>Pradhan, Anway</creatorcontrib><creatorcontrib>Bar-On, Benny</creatorcontrib><creatorcontrib>Ya’akobovitz, Assaf</creatorcontrib><title>Multiscale Elasticity of 3D Boron Carbonitride Foam for Tunable Mechanical Resisting Devices</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Boron carbonitride (BCN) foam is a three-dimensional material with a hierarchical structure, which has promising potential due to its semiconducting properties and high surface area. However, the lack of understanding of its elastic properties impedes its large-scale integration into advanced applications. We grew BCN foam samples with different atomic compositions and studied their microscopic- and macroscopic-scale mechanics, which revealed that samples with high concentrations of carbon have lower elastic resistance across different scales (i.e., lower Young’s moduli). While the microscopic elasticity is dominated by interlayer interactions, the macroscopic elasticity is also strongly influenced by the buckling and fracturing of the three-dimensional structure of the BCN foam, and thus, the macroscopic Young’s moduli are lower than the microscopic ones. Our findings shed light on the mechanism that underlies the multiscale mechanics of BCN foam and pave the path toward its integration into tunable mechanical resisting devices such as flexible electronic devices and resonators.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGqvnnMWtk4-tpsctR8qtAhSb8IyGxNN2SaS7Ar99660By-eZhje52V4CLlmMGXA2S2ajGE_FQaEFPyMjHhZyQJ0Bed_9ksyyXkHAEyzmQAYkbdN33Y-G2wtXbaYO298d6DRUbGg9zHFQOeYmhh8l_y7pauIe-piots-YDNAG2s-MfihgL7Y7IeC8EEX9tsbm6_IhcM228lpjsnrarmdPxbr54en-d26QM51VzBlHGOAaKqZ5rpRtpxZ1kiHXDEuhOZKclkp5aQ2AnSppdJSNmXZcCMqK8Zkeuw1KeacrKu_kt9jOtQM6l899VFPfdIzADdHYLjXu9inMLz3X_gHkbxmeA</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Jahn, Yarden Mazal</creator><creator>Levavi, Liat</creator><creator>Pradhan, Anway</creator><creator>Bar-On, Benny</creator><creator>Ya’akobovitz, Assaf</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5836-0549</orcidid></search><sort><creationdate>20231110</creationdate><title>Multiscale Elasticity of 3D Boron Carbonitride Foam for Tunable Mechanical Resisting Devices</title><author>Jahn, Yarden Mazal ; Levavi, Liat ; Pradhan, Anway ; Bar-On, Benny ; Ya’akobovitz, Assaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-18cf110aac76929b8e56e1b4fa281233928424788f49c3095948944b55b2c37e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahn, Yarden Mazal</creatorcontrib><creatorcontrib>Levavi, Liat</creatorcontrib><creatorcontrib>Pradhan, Anway</creatorcontrib><creatorcontrib>Bar-On, Benny</creatorcontrib><creatorcontrib>Ya’akobovitz, Assaf</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahn, Yarden Mazal</au><au>Levavi, Liat</au><au>Pradhan, Anway</au><au>Bar-On, Benny</au><au>Ya’akobovitz, Assaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Elasticity of 3D Boron Carbonitride Foam for Tunable Mechanical Resisting Devices</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2023-11-10</date><risdate>2023</risdate><volume>6</volume><issue>21</issue><spage>19681</spage><epage>19688</epage><pages>19681-19688</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Boron carbonitride (BCN) foam is a three-dimensional material with a hierarchical structure, which has promising potential due to its semiconducting properties and high surface area. However, the lack of understanding of its elastic properties impedes its large-scale integration into advanced applications. We grew BCN foam samples with different atomic compositions and studied their microscopic- and macroscopic-scale mechanics, which revealed that samples with high concentrations of carbon have lower elastic resistance across different scales (i.e., lower Young’s moduli). While the microscopic elasticity is dominated by interlayer interactions, the macroscopic elasticity is also strongly influenced by the buckling and fracturing of the three-dimensional structure of the BCN foam, and thus, the macroscopic Young’s moduli are lower than the microscopic ones. Our findings shed light on the mechanism that underlies the multiscale mechanics of BCN foam and pave the path toward its integration into tunable mechanical resisting devices such as flexible electronic devices and resonators.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.3c03432</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5836-0549</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0970 |
ispartof | ACS applied nano materials, 2023-11, Vol.6 (21), p.19681-19688 |
issn | 2574-0970 2574-0970 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsanm_3c03432 |
source | ACS Publications |
title | Multiscale Elasticity of 3D Boron Carbonitride Foam for Tunable Mechanical Resisting Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Elasticity%20of%203D%20Boron%20Carbonitride%20Foam%20for%20Tunable%20Mechanical%20Resisting%20Devices&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Jahn,%20Yarden%20Mazal&rft.date=2023-11-10&rft.volume=6&rft.issue=21&rft.spage=19681&rft.epage=19688&rft.pages=19681-19688&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.3c03432&rft_dat=%3Cacs_cross%3Ec200804658%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |