Intercalated Multilayer Graphene with Ultra Low Resistance for Next-Generation Interconnects

In recent years, many reports have demonstrated the high potential for multilayer graphene in semiconductor fabrication. As interconnects within semiconductors or electrodes for two-dimensional transistors, the preparation of large-area multilayer graphene is becoming increasingly important. Herein,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2023-06, Vol.6 (12), p.10680-10686
Hauptverfasser: Huang, Jian-Zhi, Chang, En-Cheng, Tsao, Po-Chou, Ni, I-Chih, Li, Shu-Wei, Chan, Yu-Chen, Yang, Shin-Yi, Lee, Ming-Han, Shue, Shau-Lin, Chen, Mei-Hsin, Wu, Chih-I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10686
container_issue 12
container_start_page 10680
container_title ACS applied nano materials
container_volume 6
creator Huang, Jian-Zhi
Chang, En-Cheng
Tsao, Po-Chou
Ni, I-Chih
Li, Shu-Wei
Chan, Yu-Chen
Yang, Shin-Yi
Lee, Ming-Han
Shue, Shau-Lin
Chen, Mei-Hsin
Wu, Chih-I
description In recent years, many reports have demonstrated the high potential for multilayer graphene in semiconductor fabrication. As interconnects within semiconductors or electrodes for two-dimensional transistors, the preparation of large-area multilayer graphene is becoming increasingly important. Herein, we report a method for growing large-area multilayer graphene, which can achieve rapid heating and cooling. With the use of a high carbon concentration source, the preparation of multilayer graphene can be completed in a few seconds. This manufacturing method has the advantage of producing graphene with high quality, uniformity, and electrical conductivity. In commercial applications, this technology has great potential for the mass production and rapid fabrication of multilayer graphene. In addition, we found that the multilayer graphene produced by this method had cobalt atoms doped into the multilayer graphene during the process, resulting in its low resistivity. Combined with our intercalation technology, intercalated FeCl3 in the graphene interlayer can reduce the resistivity of graphene to 3.55 μΩ cm, which is very close to the resistivity of copper bulk. This result makes multilayer graphene more promising for various applications.
doi_str_mv 10.1021/acsanm.3c01612
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_3c01612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h20991559</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-861a9b03e44edfc79bde1d83f1e0a267d7e894e76de9eb648e9d4dfaae594d533</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsNRePe9ZSJ1NNh97lKKxEBXE3oQw3Z3QlHRTdrfU_vempAcvnt7weO8x_Bi7FzAXEItH1B7tbp5oEJmIr9gkTnMZgcrh-s99y2bebwFAKJElABP2vbSBnMYOAxn-duhC2-GJHC8d7jdkiR_bsOGrLjjkVX_kn-RbH9Bq4k3v-Dv9hKgccg5D21s-zvXWkg7-jt002HmaXXTKVi_PX4vXqPool4unKsI4ViEqMoFqDQlJSabRuVobEqZIGkGAcZabnAolKc8MKVpnsiBlpGkQKVXSpEkyZfNxV7vee0dNvXftDt2pFlCf8dQjnvqCZyg8jIXBr7f9wdnhvf_Cv7q3aeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intercalated Multilayer Graphene with Ultra Low Resistance for Next-Generation Interconnects</title><source>ACS Publications</source><creator>Huang, Jian-Zhi ; Chang, En-Cheng ; Tsao, Po-Chou ; Ni, I-Chih ; Li, Shu-Wei ; Chan, Yu-Chen ; Yang, Shin-Yi ; Lee, Ming-Han ; Shue, Shau-Lin ; Chen, Mei-Hsin ; Wu, Chih-I</creator><creatorcontrib>Huang, Jian-Zhi ; Chang, En-Cheng ; Tsao, Po-Chou ; Ni, I-Chih ; Li, Shu-Wei ; Chan, Yu-Chen ; Yang, Shin-Yi ; Lee, Ming-Han ; Shue, Shau-Lin ; Chen, Mei-Hsin ; Wu, Chih-I</creatorcontrib><description>In recent years, many reports have demonstrated the high potential for multilayer graphene in semiconductor fabrication. As interconnects within semiconductors or electrodes for two-dimensional transistors, the preparation of large-area multilayer graphene is becoming increasingly important. Herein, we report a method for growing large-area multilayer graphene, which can achieve rapid heating and cooling. With the use of a high carbon concentration source, the preparation of multilayer graphene can be completed in a few seconds. This manufacturing method has the advantage of producing graphene with high quality, uniformity, and electrical conductivity. In commercial applications, this technology has great potential for the mass production and rapid fabrication of multilayer graphene. In addition, we found that the multilayer graphene produced by this method had cobalt atoms doped into the multilayer graphene during the process, resulting in its low resistivity. Combined with our intercalation technology, intercalated FeCl3 in the graphene interlayer can reduce the resistivity of graphene to 3.55 μΩ cm, which is very close to the resistivity of copper bulk. This result makes multilayer graphene more promising for various applications.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.3c01612</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2023-06, Vol.6 (12), p.10680-10686</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a229t-861a9b03e44edfc79bde1d83f1e0a267d7e894e76de9eb648e9d4dfaae594d533</cites><orcidid>0000-0003-4120-7991 ; 0000-0003-3613-7511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.3c01612$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.3c01612$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Huang, Jian-Zhi</creatorcontrib><creatorcontrib>Chang, En-Cheng</creatorcontrib><creatorcontrib>Tsao, Po-Chou</creatorcontrib><creatorcontrib>Ni, I-Chih</creatorcontrib><creatorcontrib>Li, Shu-Wei</creatorcontrib><creatorcontrib>Chan, Yu-Chen</creatorcontrib><creatorcontrib>Yang, Shin-Yi</creatorcontrib><creatorcontrib>Lee, Ming-Han</creatorcontrib><creatorcontrib>Shue, Shau-Lin</creatorcontrib><creatorcontrib>Chen, Mei-Hsin</creatorcontrib><creatorcontrib>Wu, Chih-I</creatorcontrib><title>Intercalated Multilayer Graphene with Ultra Low Resistance for Next-Generation Interconnects</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>In recent years, many reports have demonstrated the high potential for multilayer graphene in semiconductor fabrication. As interconnects within semiconductors or electrodes for two-dimensional transistors, the preparation of large-area multilayer graphene is becoming increasingly important. Herein, we report a method for growing large-area multilayer graphene, which can achieve rapid heating and cooling. With the use of a high carbon concentration source, the preparation of multilayer graphene can be completed in a few seconds. This manufacturing method has the advantage of producing graphene with high quality, uniformity, and electrical conductivity. In commercial applications, this technology has great potential for the mass production and rapid fabrication of multilayer graphene. In addition, we found that the multilayer graphene produced by this method had cobalt atoms doped into the multilayer graphene during the process, resulting in its low resistivity. Combined with our intercalation technology, intercalated FeCl3 in the graphene interlayer can reduce the resistivity of graphene to 3.55 μΩ cm, which is very close to the resistivity of copper bulk. This result makes multilayer graphene more promising for various applications.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsNRePe9ZSJ1NNh97lKKxEBXE3oQw3Z3QlHRTdrfU_vempAcvnt7weO8x_Bi7FzAXEItH1B7tbp5oEJmIr9gkTnMZgcrh-s99y2bebwFAKJElABP2vbSBnMYOAxn-duhC2-GJHC8d7jdkiR_bsOGrLjjkVX_kn-RbH9Bq4k3v-Dv9hKgccg5D21s-zvXWkg7-jt002HmaXXTKVi_PX4vXqPool4unKsI4ViEqMoFqDQlJSabRuVobEqZIGkGAcZabnAolKc8MKVpnsiBlpGkQKVXSpEkyZfNxV7vee0dNvXftDt2pFlCf8dQjnvqCZyg8jIXBr7f9wdnhvf_Cv7q3aeI</recordid><startdate>20230623</startdate><enddate>20230623</enddate><creator>Huang, Jian-Zhi</creator><creator>Chang, En-Cheng</creator><creator>Tsao, Po-Chou</creator><creator>Ni, I-Chih</creator><creator>Li, Shu-Wei</creator><creator>Chan, Yu-Chen</creator><creator>Yang, Shin-Yi</creator><creator>Lee, Ming-Han</creator><creator>Shue, Shau-Lin</creator><creator>Chen, Mei-Hsin</creator><creator>Wu, Chih-I</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4120-7991</orcidid><orcidid>https://orcid.org/0000-0003-3613-7511</orcidid></search><sort><creationdate>20230623</creationdate><title>Intercalated Multilayer Graphene with Ultra Low Resistance for Next-Generation Interconnects</title><author>Huang, Jian-Zhi ; Chang, En-Cheng ; Tsao, Po-Chou ; Ni, I-Chih ; Li, Shu-Wei ; Chan, Yu-Chen ; Yang, Shin-Yi ; Lee, Ming-Han ; Shue, Shau-Lin ; Chen, Mei-Hsin ; Wu, Chih-I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-861a9b03e44edfc79bde1d83f1e0a267d7e894e76de9eb648e9d4dfaae594d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jian-Zhi</creatorcontrib><creatorcontrib>Chang, En-Cheng</creatorcontrib><creatorcontrib>Tsao, Po-Chou</creatorcontrib><creatorcontrib>Ni, I-Chih</creatorcontrib><creatorcontrib>Li, Shu-Wei</creatorcontrib><creatorcontrib>Chan, Yu-Chen</creatorcontrib><creatorcontrib>Yang, Shin-Yi</creatorcontrib><creatorcontrib>Lee, Ming-Han</creatorcontrib><creatorcontrib>Shue, Shau-Lin</creatorcontrib><creatorcontrib>Chen, Mei-Hsin</creatorcontrib><creatorcontrib>Wu, Chih-I</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jian-Zhi</au><au>Chang, En-Cheng</au><au>Tsao, Po-Chou</au><au>Ni, I-Chih</au><au>Li, Shu-Wei</au><au>Chan, Yu-Chen</au><au>Yang, Shin-Yi</au><au>Lee, Ming-Han</au><au>Shue, Shau-Lin</au><au>Chen, Mei-Hsin</au><au>Wu, Chih-I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intercalated Multilayer Graphene with Ultra Low Resistance for Next-Generation Interconnects</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2023-06-23</date><risdate>2023</risdate><volume>6</volume><issue>12</issue><spage>10680</spage><epage>10686</epage><pages>10680-10686</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>In recent years, many reports have demonstrated the high potential for multilayer graphene in semiconductor fabrication. As interconnects within semiconductors or electrodes for two-dimensional transistors, the preparation of large-area multilayer graphene is becoming increasingly important. Herein, we report a method for growing large-area multilayer graphene, which can achieve rapid heating and cooling. With the use of a high carbon concentration source, the preparation of multilayer graphene can be completed in a few seconds. This manufacturing method has the advantage of producing graphene with high quality, uniformity, and electrical conductivity. In commercial applications, this technology has great potential for the mass production and rapid fabrication of multilayer graphene. In addition, we found that the multilayer graphene produced by this method had cobalt atoms doped into the multilayer graphene during the process, resulting in its low resistivity. Combined with our intercalation technology, intercalated FeCl3 in the graphene interlayer can reduce the resistivity of graphene to 3.55 μΩ cm, which is very close to the resistivity of copper bulk. This result makes multilayer graphene more promising for various applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.3c01612</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4120-7991</orcidid><orcidid>https://orcid.org/0000-0003-3613-7511</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2023-06, Vol.6 (12), p.10680-10686
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_3c01612
source ACS Publications
title Intercalated Multilayer Graphene with Ultra Low Resistance for Next-Generation Interconnects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intercalated%20Multilayer%20Graphene%20with%20Ultra%20Low%20Resistance%20for%20Next-Generation%20Interconnects&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Huang,%20Jian-Zhi&rft.date=2023-06-23&rft.volume=6&rft.issue=12&rft.spage=10680&rft.epage=10686&rft.pages=10680-10686&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.3c01612&rft_dat=%3Cacs_cross%3Eh20991559%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true