Uranium Phthalocyanine-Anchored Acid-Functionalized Multiwalled Carbon Nanotubes for Water Electrolysis

One of the major challenges in the commercial production of hydrogen and oxygen from the electrochemical water splitting reaction is the nonavailability of potential and low-cost electrocatalysts for the enhancement of both the half-cell reactions. The bifunctional catalyst capable of demonstrating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2023-05, Vol.6 (10), p.8880-8893
Hauptverfasser: Giddaerappa, Puttaningaiah, Keshavananda Prabhu Channabasavana Hundi, Aralekallu, Shambhulinga, Shantharaja, Naseem Kousar, Chikkabasur Kumbara, Ashwini, Sannegowda, Lokesh Koodlur
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8893
container_issue 10
container_start_page 8880
container_title ACS applied nano materials
container_volume 6
creator Giddaerappa
Puttaningaiah, Keshavananda Prabhu Channabasavana Hundi
Aralekallu, Shambhulinga
Shantharaja
Naseem Kousar
Chikkabasur Kumbara, Ashwini
Sannegowda, Lokesh Koodlur
description One of the major challenges in the commercial production of hydrogen and oxygen from the electrochemical water splitting reaction is the nonavailability of potential and low-cost electrocatalysts for the enhancement of both the half-cell reactions. The bifunctional catalyst capable of demonstrating lower overpotentials for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) eliminates the usage of a membrane, simplifies the overall system design, reduces the cost, and enhances the electrochemical water splitting activity. Here, a bifunctional hybrid composite catalyst comprising an organic N4 macrocycle and acid-functionalized multiwalled carbon nanotubes (MWCNTs) is fabricated and tested for the water splitting reaction to produce H2 and O2. The uranium tetra­[4-(2-{(E)-[(4-bromophenyl)­imino]­methyl}­phenoxy)]­phthalocyanine (UTBrImPc) is synthesized via a two-step process of imine and oxy-bridge linkage formation. The synthesized ligands and phthalocyanine macrocycle are characterized using various spectroscopic and analytical techniques. The glassy carbon electrode (GCE) and Ni foam are used as the conducting substrate for the fabrication of the UTBrImPc/MWCNT bifunctional electrode to generate H2 and O2. Surprisingly, the fabricated bifunctional hybrid catalyst on the GCE exhibited a lesser overpotential of 15 mV for the HER, which is close to that of the benchmark Pt/C catalyst. Furthermore, the Ni/UTBrImPc/MWCNT displayed a lower overpotential of 368 (±2) mV at a current density of 10 mA·cm–2 for the OER, which is close to the overpotential shown by the precious benchmark catalyst IrO2. In addition, the fabricated electrodes showed remarkable long-term stability for more than 20 h by a chronoamperometric method. The superior results for both the HER and OER at the composite organic hybrid catalyst may be due to the collusive effect of the acid-functionalized MWCNTs with UTBrImPc, which enhances the electronic conductivity and surface area. The developed state-of-the-art catalyst can be employed as a bifunctional catalyst in water electrolyzers.
doi_str_mv 10.1021/acsanm.3c01328
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_3c01328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b890844968</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-987eeaaa2cf70e1fef8c77ccebe9252a5e90d6c09efd9e8f091d08a9254f16243</originalsourceid><addsrcrecordid>eNp1kM1PAjEQxRujiQS5et6zyeK0u7DbIyGgJPhxkHjcDN2plJTWtN0Y_OtdAwcvnubNm3mTzI-xWw5jDoLfo4roDuNCAS9EfcEGYlKVOcgKLv_oazaKcQ8AXPJpATBgH5uAznSH7HWXdmi9Ovato3zm1M4HarOZMm2-7JxKxju05rv3njqbzBda2-s5hq132TM6n7otxUz7kL1jopAtLKkUvD1GE2_YlUYbaXSuQ7ZZLt7mj_n65WE1n61zFFWZcllXRIgolK6AuCZdq6pSirYkxUTghCS0UwWSdCup1iB5CzX2s1LzqSiLIRuf7qrgYwykm89gDhiODYfml1RzItWcSfWBu1Og95u970L_ZPxv-Qd1SW4_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uranium Phthalocyanine-Anchored Acid-Functionalized Multiwalled Carbon Nanotubes for Water Electrolysis</title><source>American Chemical Society Journals</source><creator>Giddaerappa ; Puttaningaiah, Keshavananda Prabhu Channabasavana Hundi ; Aralekallu, Shambhulinga ; Shantharaja ; Naseem Kousar ; Chikkabasur Kumbara, Ashwini ; Sannegowda, Lokesh Koodlur</creator><creatorcontrib>Giddaerappa ; Puttaningaiah, Keshavananda Prabhu Channabasavana Hundi ; Aralekallu, Shambhulinga ; Shantharaja ; Naseem Kousar ; Chikkabasur Kumbara, Ashwini ; Sannegowda, Lokesh Koodlur</creatorcontrib><description>One of the major challenges in the commercial production of hydrogen and oxygen from the electrochemical water splitting reaction is the nonavailability of potential and low-cost electrocatalysts for the enhancement of both the half-cell reactions. The bifunctional catalyst capable of demonstrating lower overpotentials for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) eliminates the usage of a membrane, simplifies the overall system design, reduces the cost, and enhances the electrochemical water splitting activity. Here, a bifunctional hybrid composite catalyst comprising an organic N4 macrocycle and acid-functionalized multiwalled carbon nanotubes (MWCNTs) is fabricated and tested for the water splitting reaction to produce H2 and O2. The uranium tetra­[4-(2-{(E)-[(4-bromophenyl)­imino]­methyl}­phenoxy)]­phthalocyanine (UTBrImPc) is synthesized via a two-step process of imine and oxy-bridge linkage formation. The synthesized ligands and phthalocyanine macrocycle are characterized using various spectroscopic and analytical techniques. The glassy carbon electrode (GCE) and Ni foam are used as the conducting substrate for the fabrication of the UTBrImPc/MWCNT bifunctional electrode to generate H2 and O2. Surprisingly, the fabricated bifunctional hybrid catalyst on the GCE exhibited a lesser overpotential of 15 mV for the HER, which is close to that of the benchmark Pt/C catalyst. Furthermore, the Ni/UTBrImPc/MWCNT displayed a lower overpotential of 368 (±2) mV at a current density of 10 mA·cm–2 for the OER, which is close to the overpotential shown by the precious benchmark catalyst IrO2. In addition, the fabricated electrodes showed remarkable long-term stability for more than 20 h by a chronoamperometric method. The superior results for both the HER and OER at the composite organic hybrid catalyst may be due to the collusive effect of the acid-functionalized MWCNTs with UTBrImPc, which enhances the electronic conductivity and surface area. The developed state-of-the-art catalyst can be employed as a bifunctional catalyst in water electrolyzers.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.3c01328</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2023-05, Vol.6 (10), p.8880-8893</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-987eeaaa2cf70e1fef8c77ccebe9252a5e90d6c09efd9e8f091d08a9254f16243</citedby><cites>FETCH-LOGICAL-a274t-987eeaaa2cf70e1fef8c77ccebe9252a5e90d6c09efd9e8f091d08a9254f16243</cites><orcidid>0000-0001-7276-9335 ; 0000-0001-7682-8750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.3c01328$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.3c01328$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Giddaerappa</creatorcontrib><creatorcontrib>Puttaningaiah, Keshavananda Prabhu Channabasavana Hundi</creatorcontrib><creatorcontrib>Aralekallu, Shambhulinga</creatorcontrib><creatorcontrib>Shantharaja</creatorcontrib><creatorcontrib>Naseem Kousar</creatorcontrib><creatorcontrib>Chikkabasur Kumbara, Ashwini</creatorcontrib><creatorcontrib>Sannegowda, Lokesh Koodlur</creatorcontrib><title>Uranium Phthalocyanine-Anchored Acid-Functionalized Multiwalled Carbon Nanotubes for Water Electrolysis</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>One of the major challenges in the commercial production of hydrogen and oxygen from the electrochemical water splitting reaction is the nonavailability of potential and low-cost electrocatalysts for the enhancement of both the half-cell reactions. The bifunctional catalyst capable of demonstrating lower overpotentials for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) eliminates the usage of a membrane, simplifies the overall system design, reduces the cost, and enhances the electrochemical water splitting activity. Here, a bifunctional hybrid composite catalyst comprising an organic N4 macrocycle and acid-functionalized multiwalled carbon nanotubes (MWCNTs) is fabricated and tested for the water splitting reaction to produce H2 and O2. The uranium tetra­[4-(2-{(E)-[(4-bromophenyl)­imino]­methyl}­phenoxy)]­phthalocyanine (UTBrImPc) is synthesized via a two-step process of imine and oxy-bridge linkage formation. The synthesized ligands and phthalocyanine macrocycle are characterized using various spectroscopic and analytical techniques. The glassy carbon electrode (GCE) and Ni foam are used as the conducting substrate for the fabrication of the UTBrImPc/MWCNT bifunctional electrode to generate H2 and O2. Surprisingly, the fabricated bifunctional hybrid catalyst on the GCE exhibited a lesser overpotential of 15 mV for the HER, which is close to that of the benchmark Pt/C catalyst. Furthermore, the Ni/UTBrImPc/MWCNT displayed a lower overpotential of 368 (±2) mV at a current density of 10 mA·cm–2 for the OER, which is close to the overpotential shown by the precious benchmark catalyst IrO2. In addition, the fabricated electrodes showed remarkable long-term stability for more than 20 h by a chronoamperometric method. The superior results for both the HER and OER at the composite organic hybrid catalyst may be due to the collusive effect of the acid-functionalized MWCNTs with UTBrImPc, which enhances the electronic conductivity and surface area. The developed state-of-the-art catalyst can be employed as a bifunctional catalyst in water electrolyzers.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PAjEQxRujiQS5et6zyeK0u7DbIyGgJPhxkHjcDN2plJTWtN0Y_OtdAwcvnubNm3mTzI-xWw5jDoLfo4roDuNCAS9EfcEGYlKVOcgKLv_oazaKcQ8AXPJpATBgH5uAznSH7HWXdmi9Ovato3zm1M4HarOZMm2-7JxKxju05rv3njqbzBda2-s5hq132TM6n7otxUz7kL1jopAtLKkUvD1GE2_YlUYbaXSuQ7ZZLt7mj_n65WE1n61zFFWZcllXRIgolK6AuCZdq6pSirYkxUTghCS0UwWSdCup1iB5CzX2s1LzqSiLIRuf7qrgYwykm89gDhiODYfml1RzItWcSfWBu1Og95u970L_ZPxv-Qd1SW4_</recordid><startdate>20230526</startdate><enddate>20230526</enddate><creator>Giddaerappa</creator><creator>Puttaningaiah, Keshavananda Prabhu Channabasavana Hundi</creator><creator>Aralekallu, Shambhulinga</creator><creator>Shantharaja</creator><creator>Naseem Kousar</creator><creator>Chikkabasur Kumbara, Ashwini</creator><creator>Sannegowda, Lokesh Koodlur</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7276-9335</orcidid><orcidid>https://orcid.org/0000-0001-7682-8750</orcidid></search><sort><creationdate>20230526</creationdate><title>Uranium Phthalocyanine-Anchored Acid-Functionalized Multiwalled Carbon Nanotubes for Water Electrolysis</title><author>Giddaerappa ; Puttaningaiah, Keshavananda Prabhu Channabasavana Hundi ; Aralekallu, Shambhulinga ; Shantharaja ; Naseem Kousar ; Chikkabasur Kumbara, Ashwini ; Sannegowda, Lokesh Koodlur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-987eeaaa2cf70e1fef8c77ccebe9252a5e90d6c09efd9e8f091d08a9254f16243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giddaerappa</creatorcontrib><creatorcontrib>Puttaningaiah, Keshavananda Prabhu Channabasavana Hundi</creatorcontrib><creatorcontrib>Aralekallu, Shambhulinga</creatorcontrib><creatorcontrib>Shantharaja</creatorcontrib><creatorcontrib>Naseem Kousar</creatorcontrib><creatorcontrib>Chikkabasur Kumbara, Ashwini</creatorcontrib><creatorcontrib>Sannegowda, Lokesh Koodlur</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giddaerappa</au><au>Puttaningaiah, Keshavananda Prabhu Channabasavana Hundi</au><au>Aralekallu, Shambhulinga</au><au>Shantharaja</au><au>Naseem Kousar</au><au>Chikkabasur Kumbara, Ashwini</au><au>Sannegowda, Lokesh Koodlur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uranium Phthalocyanine-Anchored Acid-Functionalized Multiwalled Carbon Nanotubes for Water Electrolysis</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2023-05-26</date><risdate>2023</risdate><volume>6</volume><issue>10</issue><spage>8880</spage><epage>8893</epage><pages>8880-8893</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>One of the major challenges in the commercial production of hydrogen and oxygen from the electrochemical water splitting reaction is the nonavailability of potential and low-cost electrocatalysts for the enhancement of both the half-cell reactions. The bifunctional catalyst capable of demonstrating lower overpotentials for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) eliminates the usage of a membrane, simplifies the overall system design, reduces the cost, and enhances the electrochemical water splitting activity. Here, a bifunctional hybrid composite catalyst comprising an organic N4 macrocycle and acid-functionalized multiwalled carbon nanotubes (MWCNTs) is fabricated and tested for the water splitting reaction to produce H2 and O2. The uranium tetra­[4-(2-{(E)-[(4-bromophenyl)­imino]­methyl}­phenoxy)]­phthalocyanine (UTBrImPc) is synthesized via a two-step process of imine and oxy-bridge linkage formation. The synthesized ligands and phthalocyanine macrocycle are characterized using various spectroscopic and analytical techniques. The glassy carbon electrode (GCE) and Ni foam are used as the conducting substrate for the fabrication of the UTBrImPc/MWCNT bifunctional electrode to generate H2 and O2. Surprisingly, the fabricated bifunctional hybrid catalyst on the GCE exhibited a lesser overpotential of 15 mV for the HER, which is close to that of the benchmark Pt/C catalyst. Furthermore, the Ni/UTBrImPc/MWCNT displayed a lower overpotential of 368 (±2) mV at a current density of 10 mA·cm–2 for the OER, which is close to the overpotential shown by the precious benchmark catalyst IrO2. In addition, the fabricated electrodes showed remarkable long-term stability for more than 20 h by a chronoamperometric method. The superior results for both the HER and OER at the composite organic hybrid catalyst may be due to the collusive effect of the acid-functionalized MWCNTs with UTBrImPc, which enhances the electronic conductivity and surface area. The developed state-of-the-art catalyst can be employed as a bifunctional catalyst in water electrolyzers.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.3c01328</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7276-9335</orcidid><orcidid>https://orcid.org/0000-0001-7682-8750</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2023-05, Vol.6 (10), p.8880-8893
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_3c01328
source American Chemical Society Journals
title Uranium Phthalocyanine-Anchored Acid-Functionalized Multiwalled Carbon Nanotubes for Water Electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uranium%20Phthalocyanine-Anchored%20Acid-Functionalized%20Multiwalled%20Carbon%20Nanotubes%20for%20Water%20Electrolysis&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Giddaerappa&rft.date=2023-05-26&rft.volume=6&rft.issue=10&rft.spage=8880&rft.epage=8893&rft.pages=8880-8893&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.3c01328&rft_dat=%3Cacs_cross%3Eb890844968%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true