Ultra-Halide-Rich Synthesis of Stable Pure Tin-Based Halide Perovskite Quantum Dots: Implications for Photovoltaics

Tin (Sn)-based halide perovskites crystallized in the form of quantum dots (QDs) have attracted considerable attention due to their attractive features that are unique to the quantum realm. However, unlike those of their lead (Pb) counterparts, isolation and purification of the as-synthesized Sn-bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2021-04, Vol.4 (4), p.3958-3968
Hauptverfasser: Liu, Feng, Jiang, Junke, Toyoda, Taro, Kamarudin, Muhammad Akmal, Hayase, Shuzi, Wang, Ruixiang, Tao, Shuxia, Shen, Qing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3968
container_issue 4
container_start_page 3958
container_title ACS applied nano materials
container_volume 4
creator Liu, Feng
Jiang, Junke
Toyoda, Taro
Kamarudin, Muhammad Akmal
Hayase, Shuzi
Wang, Ruixiang
Tao, Shuxia
Shen, Qing
description Tin (Sn)-based halide perovskites crystallized in the form of quantum dots (QDs) have attracted considerable attention due to their attractive features that are unique to the quantum realm. However, unlike those of their lead (Pb) counterparts, isolation and purification of the as-synthesized Sn-based QDs remain a challenge, as they undergo rapid decomposition in the most common antisolvents as well as in open air. Herein, we discover that CsSnX3 (X = Cl, Br, and I) QDs prepared under ultra-halide-rich conditions exhibit superior durability against the antisolvents even with high hydrophilicity like methyl acetate and can be thus readily purified under ambient conditions without the need for a strict inert atmosphere. First principles calculations reveal that halide-rich synthesis favors the formation of enhanced chemical bonds between QDs and their surface ligands and reduces ligand mobility. Both help to prevent structural decomposition and to preserve the perovskite composition. The successful synthesis of structurally stable Sn-based perovskite QDs accomplished without the use of any particular antioxidants or additional doping, provides alternative material design strategies for enhancing the stability of these fascinating yet fragile nanomaterials.
doi_str_mv 10.1021/acsanm.1c00324
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_1c00324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b424801717</sourcerecordid><originalsourceid>FETCH-LOGICAL-a340t-dadd109d4158570287f8d964c01f78e47b45fd15c323d2e23e034fc4c1aa4373</originalsourceid><addsrcrecordid>eNp1kM1Lw0AUxBdRsNRePe9ZSH2b3TSJN60fLRSstp7D637QrUm27G4K_e-tpAcvnt7wmBmGHyG3DMYMUnaPMmDbjJkE4Km4IIM0y0UCZQ6Xf_Q1GYWwAwBWsgkHGJDwVUePyQxrq3TyaeWWro5t3OpgA3WGriJuak2Xndd0bdvkCYNWtLfTpfbuEL5t1PSjwzZ2DX12MTzQebOvrcRoXRuocZ4uty66g6sjWhluyJXBOujR-Q7J-vVlPZ0li_e3-fRxkSAXEBOFSjEolWBZkeWQFrkpVDkREpjJCy3yjciMYpnkKVepTrkGLowUkiEKnvMhGfe10rsQvDbV3tsG_bFiUP1Cq3po1RnaKXDXB07_auc6357W_Wf-AdNJb8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultra-Halide-Rich Synthesis of Stable Pure Tin-Based Halide Perovskite Quantum Dots: Implications for Photovoltaics</title><source>ACS Publications</source><creator>Liu, Feng ; Jiang, Junke ; Toyoda, Taro ; Kamarudin, Muhammad Akmal ; Hayase, Shuzi ; Wang, Ruixiang ; Tao, Shuxia ; Shen, Qing</creator><creatorcontrib>Liu, Feng ; Jiang, Junke ; Toyoda, Taro ; Kamarudin, Muhammad Akmal ; Hayase, Shuzi ; Wang, Ruixiang ; Tao, Shuxia ; Shen, Qing</creatorcontrib><description>Tin (Sn)-based halide perovskites crystallized in the form of quantum dots (QDs) have attracted considerable attention due to their attractive features that are unique to the quantum realm. However, unlike those of their lead (Pb) counterparts, isolation and purification of the as-synthesized Sn-based QDs remain a challenge, as they undergo rapid decomposition in the most common antisolvents as well as in open air. Herein, we discover that CsSnX3 (X = Cl, Br, and I) QDs prepared under ultra-halide-rich conditions exhibit superior durability against the antisolvents even with high hydrophilicity like methyl acetate and can be thus readily purified under ambient conditions without the need for a strict inert atmosphere. First principles calculations reveal that halide-rich synthesis favors the formation of enhanced chemical bonds between QDs and their surface ligands and reduces ligand mobility. Both help to prevent structural decomposition and to preserve the perovskite composition. The successful synthesis of structurally stable Sn-based perovskite QDs accomplished without the use of any particular antioxidants or additional doping, provides alternative material design strategies for enhancing the stability of these fascinating yet fragile nanomaterials.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.1c00324</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2021-04, Vol.4 (4), p.3958-3968</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a340t-dadd109d4158570287f8d964c01f78e47b45fd15c323d2e23e034fc4c1aa4373</citedby><cites>FETCH-LOGICAL-a340t-dadd109d4158570287f8d964c01f78e47b45fd15c323d2e23e034fc4c1aa4373</cites><orcidid>0000-0001-8359-3275 ; 0000-0002-6903-6840 ; 0000-0002-2256-5948 ; 0000-0003-2962-766X ; 0000-0002-3658-8497 ; 0000-0002-2067-3689 ; 0000-0003-4666-9917 ; 0000-0002-5066-4978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.1c00324$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.1c00324$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Jiang, Junke</creatorcontrib><creatorcontrib>Toyoda, Taro</creatorcontrib><creatorcontrib>Kamarudin, Muhammad Akmal</creatorcontrib><creatorcontrib>Hayase, Shuzi</creatorcontrib><creatorcontrib>Wang, Ruixiang</creatorcontrib><creatorcontrib>Tao, Shuxia</creatorcontrib><creatorcontrib>Shen, Qing</creatorcontrib><title>Ultra-Halide-Rich Synthesis of Stable Pure Tin-Based Halide Perovskite Quantum Dots: Implications for Photovoltaics</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Tin (Sn)-based halide perovskites crystallized in the form of quantum dots (QDs) have attracted considerable attention due to their attractive features that are unique to the quantum realm. However, unlike those of their lead (Pb) counterparts, isolation and purification of the as-synthesized Sn-based QDs remain a challenge, as they undergo rapid decomposition in the most common antisolvents as well as in open air. Herein, we discover that CsSnX3 (X = Cl, Br, and I) QDs prepared under ultra-halide-rich conditions exhibit superior durability against the antisolvents even with high hydrophilicity like methyl acetate and can be thus readily purified under ambient conditions without the need for a strict inert atmosphere. First principles calculations reveal that halide-rich synthesis favors the formation of enhanced chemical bonds between QDs and their surface ligands and reduces ligand mobility. Both help to prevent structural decomposition and to preserve the perovskite composition. The successful synthesis of structurally stable Sn-based perovskite QDs accomplished without the use of any particular antioxidants or additional doping, provides alternative material design strategies for enhancing the stability of these fascinating yet fragile nanomaterials.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AUxBdRsNRePe9ZSH2b3TSJN60fLRSstp7D637QrUm27G4K_e-tpAcvnt7wmBmGHyG3DMYMUnaPMmDbjJkE4Km4IIM0y0UCZQ6Xf_Q1GYWwAwBWsgkHGJDwVUePyQxrq3TyaeWWro5t3OpgA3WGriJuak2Xndd0bdvkCYNWtLfTpfbuEL5t1PSjwzZ2DX12MTzQebOvrcRoXRuocZ4uty66g6sjWhluyJXBOujR-Q7J-vVlPZ0li_e3-fRxkSAXEBOFSjEolWBZkeWQFrkpVDkREpjJCy3yjciMYpnkKVepTrkGLowUkiEKnvMhGfe10rsQvDbV3tsG_bFiUP1Cq3po1RnaKXDXB07_auc6357W_Wf-AdNJb8I</recordid><startdate>20210423</startdate><enddate>20210423</enddate><creator>Liu, Feng</creator><creator>Jiang, Junke</creator><creator>Toyoda, Taro</creator><creator>Kamarudin, Muhammad Akmal</creator><creator>Hayase, Shuzi</creator><creator>Wang, Ruixiang</creator><creator>Tao, Shuxia</creator><creator>Shen, Qing</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8359-3275</orcidid><orcidid>https://orcid.org/0000-0002-6903-6840</orcidid><orcidid>https://orcid.org/0000-0002-2256-5948</orcidid><orcidid>https://orcid.org/0000-0003-2962-766X</orcidid><orcidid>https://orcid.org/0000-0002-3658-8497</orcidid><orcidid>https://orcid.org/0000-0002-2067-3689</orcidid><orcidid>https://orcid.org/0000-0003-4666-9917</orcidid><orcidid>https://orcid.org/0000-0002-5066-4978</orcidid></search><sort><creationdate>20210423</creationdate><title>Ultra-Halide-Rich Synthesis of Stable Pure Tin-Based Halide Perovskite Quantum Dots: Implications for Photovoltaics</title><author>Liu, Feng ; Jiang, Junke ; Toyoda, Taro ; Kamarudin, Muhammad Akmal ; Hayase, Shuzi ; Wang, Ruixiang ; Tao, Shuxia ; Shen, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a340t-dadd109d4158570287f8d964c01f78e47b45fd15c323d2e23e034fc4c1aa4373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Jiang, Junke</creatorcontrib><creatorcontrib>Toyoda, Taro</creatorcontrib><creatorcontrib>Kamarudin, Muhammad Akmal</creatorcontrib><creatorcontrib>Hayase, Shuzi</creatorcontrib><creatorcontrib>Wang, Ruixiang</creatorcontrib><creatorcontrib>Tao, Shuxia</creatorcontrib><creatorcontrib>Shen, Qing</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Feng</au><au>Jiang, Junke</au><au>Toyoda, Taro</au><au>Kamarudin, Muhammad Akmal</au><au>Hayase, Shuzi</au><au>Wang, Ruixiang</au><au>Tao, Shuxia</au><au>Shen, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-Halide-Rich Synthesis of Stable Pure Tin-Based Halide Perovskite Quantum Dots: Implications for Photovoltaics</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2021-04-23</date><risdate>2021</risdate><volume>4</volume><issue>4</issue><spage>3958</spage><epage>3968</epage><pages>3958-3968</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Tin (Sn)-based halide perovskites crystallized in the form of quantum dots (QDs) have attracted considerable attention due to their attractive features that are unique to the quantum realm. However, unlike those of their lead (Pb) counterparts, isolation and purification of the as-synthesized Sn-based QDs remain a challenge, as they undergo rapid decomposition in the most common antisolvents as well as in open air. Herein, we discover that CsSnX3 (X = Cl, Br, and I) QDs prepared under ultra-halide-rich conditions exhibit superior durability against the antisolvents even with high hydrophilicity like methyl acetate and can be thus readily purified under ambient conditions without the need for a strict inert atmosphere. First principles calculations reveal that halide-rich synthesis favors the formation of enhanced chemical bonds between QDs and their surface ligands and reduces ligand mobility. Both help to prevent structural decomposition and to preserve the perovskite composition. The successful synthesis of structurally stable Sn-based perovskite QDs accomplished without the use of any particular antioxidants or additional doping, provides alternative material design strategies for enhancing the stability of these fascinating yet fragile nanomaterials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.1c00324</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8359-3275</orcidid><orcidid>https://orcid.org/0000-0002-6903-6840</orcidid><orcidid>https://orcid.org/0000-0002-2256-5948</orcidid><orcidid>https://orcid.org/0000-0003-2962-766X</orcidid><orcidid>https://orcid.org/0000-0002-3658-8497</orcidid><orcidid>https://orcid.org/0000-0002-2067-3689</orcidid><orcidid>https://orcid.org/0000-0003-4666-9917</orcidid><orcidid>https://orcid.org/0000-0002-5066-4978</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2021-04, Vol.4 (4), p.3958-3968
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_1c00324
source ACS Publications
title Ultra-Halide-Rich Synthesis of Stable Pure Tin-Based Halide Perovskite Quantum Dots: Implications for Photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-Halide-Rich%20Synthesis%20of%20Stable%20Pure%20Tin-Based%20Halide%20Perovskite%20Quantum%20Dots:%20Implications%20for%20Photovoltaics&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Liu,%20Feng&rft.date=2021-04-23&rft.volume=4&rft.issue=4&rft.spage=3958&rft.epage=3968&rft.pages=3958-3968&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.1c00324&rft_dat=%3Cacs_cross%3Eb424801717%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true