Nonaqueous Polymer Combustion Synthesis of Cubic Li 7 La 3 Zr 2 O 12 Nanopowders

Garnet-type lithium lanthanum zirconate (Li La Zr O , LLZO) shows great promise as a solid electrolyte for future solid-state lithium batteries as it possesses a uniquely beneficial combination of high ionic conductivity, electrochemical stability against metallic lithium, and generally low reactivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-01, Vol.12 (1), p.953-962
Hauptverfasser: Weller, J Mark, Whetten, Justin A, Chan, Candace K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 962
container_issue 1
container_start_page 953
container_title ACS applied materials & interfaces
container_volume 12
creator Weller, J Mark
Whetten, Justin A
Chan, Candace K
description Garnet-type lithium lanthanum zirconate (Li La Zr O , LLZO) shows great promise as a solid electrolyte for future solid-state lithium batteries as it possesses a uniquely beneficial combination of high ionic conductivity, electrochemical stability against metallic lithium, and generally low reactivity in ambient conditions. Conventionally synthesized by using solid-state reactions, LLZO powders have also been prepared by using variations of sol-gel or combustion synthesis with sacrificial organic templates or polymers containing metal nitrate precursors. Herein, a novel nonaqueous polymer (NAP) method using metalorganic precursors and poly(vinylpyrrolidone) is demonstrated to easily form LLZO nanopowders. Compared to similar techniques using aqueous solutions with metal nitrates, the NAP method confers greater control over synthesis conditions. Undoped cubic phase LLZO is obtained after calcination at 700-800 °C between 0 and 4 h, and the NAP process is easily extended to Ta-doped LLZO. To elucidate the general formation mechanism of nanosized LLZO in the NAP combustion synthesis, scanning transmission electron microscopy is used to perform energy dispersive X-ray and electron energy loss spectral imaging. The results show that formation of a carbonaceous foam during combustion physically segregates pockets of reagents and is responsible for maintaining the small particle size of the as-synthesized material during combustion and crystallization. The room temperature ionic conductivity of nanosized Ta-doped LLZO synthesized by using the NAP method was studied under various sintering conditions, with ionic conductivities between 0.24 and 0.67 mS cm , activation energies between 0.34 and 0.42 eV, and relative densities in excess of 90% obtained by sintering at 1100 °C for between 6 and 15 h.
doi_str_mv 10.1021/acsami.9b19981
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_9b19981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31800212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1072-16c71f8a319d647a4154070aa9f65e2ba824dcf0ba3634ff12a3bba8bae8d4d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK1ePcr8gdSd3c3XUYJWIbQFe_ISZpNdjDTZutsg_fdGWnuaYZjn5eVh7B75HLnAR6oDde0815jnGV6wKeZKRZmIxeV5V2rCbkL44jyRgsfXbCIx4yMtpmy9dD19D8YNAdZue-iMh8J1egj71vXwfuj3nya0AZyFYtBtDWULKZQEEj48CFgBClhS73bupzE-3LIrS9tg7k5zxjYvz5viNSpXi7fiqYxq5KmIMKlTtBlJzJtEpaQwVjzlRLlNYiM0jbWb2nJNMpHKWhQk9XjVZLJGNXLG5sfY2rsQvLHVzrcd-UOFvPozUx3NVCczI_BwBHaD7kxzfv9XIX8B85NezQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonaqueous Polymer Combustion Synthesis of Cubic Li 7 La 3 Zr 2 O 12 Nanopowders</title><source>American Chemical Society Journals</source><creator>Weller, J Mark ; Whetten, Justin A ; Chan, Candace K</creator><creatorcontrib>Weller, J Mark ; Whetten, Justin A ; Chan, Candace K</creatorcontrib><description>Garnet-type lithium lanthanum zirconate (Li La Zr O , LLZO) shows great promise as a solid electrolyte for future solid-state lithium batteries as it possesses a uniquely beneficial combination of high ionic conductivity, electrochemical stability against metallic lithium, and generally low reactivity in ambient conditions. Conventionally synthesized by using solid-state reactions, LLZO powders have also been prepared by using variations of sol-gel or combustion synthesis with sacrificial organic templates or polymers containing metal nitrate precursors. Herein, a novel nonaqueous polymer (NAP) method using metalorganic precursors and poly(vinylpyrrolidone) is demonstrated to easily form LLZO nanopowders. Compared to similar techniques using aqueous solutions with metal nitrates, the NAP method confers greater control over synthesis conditions. Undoped cubic phase LLZO is obtained after calcination at 700-800 °C between 0 and 4 h, and the NAP process is easily extended to Ta-doped LLZO. To elucidate the general formation mechanism of nanosized LLZO in the NAP combustion synthesis, scanning transmission electron microscopy is used to perform energy dispersive X-ray and electron energy loss spectral imaging. The results show that formation of a carbonaceous foam during combustion physically segregates pockets of reagents and is responsible for maintaining the small particle size of the as-synthesized material during combustion and crystallization. The room temperature ionic conductivity of nanosized Ta-doped LLZO synthesized by using the NAP method was studied under various sintering conditions, with ionic conductivities between 0.24 and 0.67 mS cm , activation energies between 0.34 and 0.42 eV, and relative densities in excess of 90% obtained by sintering at 1100 °C for between 6 and 15 h.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b19981</identifier><identifier>PMID: 31800212</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-01, Vol.12 (1), p.953-962</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1072-16c71f8a319d647a4154070aa9f65e2ba824dcf0ba3634ff12a3bba8bae8d4d3</citedby><cites>FETCH-LOGICAL-c1072-16c71f8a319d647a4154070aa9f65e2ba824dcf0ba3634ff12a3bba8bae8d4d3</cites><orcidid>0000-0003-2056-8974 ; 0000-0003-4329-4865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31800212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weller, J Mark</creatorcontrib><creatorcontrib>Whetten, Justin A</creatorcontrib><creatorcontrib>Chan, Candace K</creatorcontrib><title>Nonaqueous Polymer Combustion Synthesis of Cubic Li 7 La 3 Zr 2 O 12 Nanopowders</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Garnet-type lithium lanthanum zirconate (Li La Zr O , LLZO) shows great promise as a solid electrolyte for future solid-state lithium batteries as it possesses a uniquely beneficial combination of high ionic conductivity, electrochemical stability against metallic lithium, and generally low reactivity in ambient conditions. Conventionally synthesized by using solid-state reactions, LLZO powders have also been prepared by using variations of sol-gel or combustion synthesis with sacrificial organic templates or polymers containing metal nitrate precursors. Herein, a novel nonaqueous polymer (NAP) method using metalorganic precursors and poly(vinylpyrrolidone) is demonstrated to easily form LLZO nanopowders. Compared to similar techniques using aqueous solutions with metal nitrates, the NAP method confers greater control over synthesis conditions. Undoped cubic phase LLZO is obtained after calcination at 700-800 °C between 0 and 4 h, and the NAP process is easily extended to Ta-doped LLZO. To elucidate the general formation mechanism of nanosized LLZO in the NAP combustion synthesis, scanning transmission electron microscopy is used to perform energy dispersive X-ray and electron energy loss spectral imaging. The results show that formation of a carbonaceous foam during combustion physically segregates pockets of reagents and is responsible for maintaining the small particle size of the as-synthesized material during combustion and crystallization. The room temperature ionic conductivity of nanosized Ta-doped LLZO synthesized by using the NAP method was studied under various sintering conditions, with ionic conductivities between 0.24 and 0.67 mS cm , activation energies between 0.34 and 0.42 eV, and relative densities in excess of 90% obtained by sintering at 1100 °C for between 6 and 15 h.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRbK1ePcr8gdSd3c3XUYJWIbQFe_ISZpNdjDTZutsg_fdGWnuaYZjn5eVh7B75HLnAR6oDde0815jnGV6wKeZKRZmIxeV5V2rCbkL44jyRgsfXbCIx4yMtpmy9dD19D8YNAdZue-iMh8J1egj71vXwfuj3nya0AZyFYtBtDWULKZQEEj48CFgBClhS73bupzE-3LIrS9tg7k5zxjYvz5viNSpXi7fiqYxq5KmIMKlTtBlJzJtEpaQwVjzlRLlNYiM0jbWb2nJNMpHKWhQk9XjVZLJGNXLG5sfY2rsQvLHVzrcd-UOFvPozUx3NVCczI_BwBHaD7kxzfv9XIX8B85NezQ</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Weller, J Mark</creator><creator>Whetten, Justin A</creator><creator>Chan, Candace K</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2056-8974</orcidid><orcidid>https://orcid.org/0000-0003-4329-4865</orcidid></search><sort><creationdate>20200108</creationdate><title>Nonaqueous Polymer Combustion Synthesis of Cubic Li 7 La 3 Zr 2 O 12 Nanopowders</title><author>Weller, J Mark ; Whetten, Justin A ; Chan, Candace K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1072-16c71f8a319d647a4154070aa9f65e2ba824dcf0ba3634ff12a3bba8bae8d4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weller, J Mark</creatorcontrib><creatorcontrib>Whetten, Justin A</creatorcontrib><creatorcontrib>Chan, Candace K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weller, J Mark</au><au>Whetten, Justin A</au><au>Chan, Candace K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonaqueous Polymer Combustion Synthesis of Cubic Li 7 La 3 Zr 2 O 12 Nanopowders</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2020-01-08</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>953</spage><epage>962</epage><pages>953-962</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Garnet-type lithium lanthanum zirconate (Li La Zr O , LLZO) shows great promise as a solid electrolyte for future solid-state lithium batteries as it possesses a uniquely beneficial combination of high ionic conductivity, electrochemical stability against metallic lithium, and generally low reactivity in ambient conditions. Conventionally synthesized by using solid-state reactions, LLZO powders have also been prepared by using variations of sol-gel or combustion synthesis with sacrificial organic templates or polymers containing metal nitrate precursors. Herein, a novel nonaqueous polymer (NAP) method using metalorganic precursors and poly(vinylpyrrolidone) is demonstrated to easily form LLZO nanopowders. Compared to similar techniques using aqueous solutions with metal nitrates, the NAP method confers greater control over synthesis conditions. Undoped cubic phase LLZO is obtained after calcination at 700-800 °C between 0 and 4 h, and the NAP process is easily extended to Ta-doped LLZO. To elucidate the general formation mechanism of nanosized LLZO in the NAP combustion synthesis, scanning transmission electron microscopy is used to perform energy dispersive X-ray and electron energy loss spectral imaging. The results show that formation of a carbonaceous foam during combustion physically segregates pockets of reagents and is responsible for maintaining the small particle size of the as-synthesized material during combustion and crystallization. The room temperature ionic conductivity of nanosized Ta-doped LLZO synthesized by using the NAP method was studied under various sintering conditions, with ionic conductivities between 0.24 and 0.67 mS cm , activation energies between 0.34 and 0.42 eV, and relative densities in excess of 90% obtained by sintering at 1100 °C for between 6 and 15 h.</abstract><cop>United States</cop><pmid>31800212</pmid><doi>10.1021/acsami.9b19981</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2056-8974</orcidid><orcidid>https://orcid.org/0000-0003-4329-4865</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-01, Vol.12 (1), p.953-962
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_9b19981
source American Chemical Society Journals
title Nonaqueous Polymer Combustion Synthesis of Cubic Li 7 La 3 Zr 2 O 12 Nanopowders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonaqueous%20Polymer%20Combustion%20Synthesis%20of%20Cubic%20Li%207%20La%203%20Zr%202%20O%2012%20Nanopowders&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Weller,%20J%20Mark&rft.date=2020-01-08&rft.volume=12&rft.issue=1&rft.spage=953&rft.epage=962&rft.pages=953-962&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b19981&rft_dat=%3Cpubmed_cross%3E31800212%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31800212&rfr_iscdi=true