A d‑Band Electron Correlated Thermoelectric Thermistor Established in Metastable Perovskite Family of Rare-Earth Nickelates

The d-band electron correlations shed a light on bridging multiple functionalities within one material system, and this further extends the horizon in material designs and their emerging device applications. Herein, we demonstrate the combination of thermoelectric and thermistor functionalities with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-09, Vol.11 (37), p.34128-34134
Hauptverfasser: Chen, Jikun, Hu, Haiyang, Wang, Jiaou, Liu, Chen, Liu, Xinling, Li, Ziang, Chen, Nuofu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34134
container_issue 37
container_start_page 34128
container_title ACS applied materials & interfaces
container_volume 11
creator Chen, Jikun
Hu, Haiyang
Wang, Jiaou
Liu, Chen
Liu, Xinling
Li, Ziang
Chen, Nuofu
description The d-band electron correlations shed a light on bridging multiple functionalities within one material system, and this further extends the horizon in material designs and their emerging device applications. Herein, we demonstrate the combination of thermoelectric and thermistor functionalities within the perovskite family of correlated rare-earth nickelates (ReNiO3) having small rare-earth elements (i.e., YNiO3 and DyNiO3), in addition to their already known metal-to-insulator transitions. In contrast to conventional semiconductive materials, the electronic band structure of ReNiO3 split within the hybridized Ni3d–O2p is closely coupled to the structure of NiO6 octahedron. Based on such a distinguished feature, it is possible to achieve the coexistence of a large magnitude of thermopower (S) and negative temperature coefficient of resistance (NTCR) in the insulating phase of ReNiO3 with small Re and more distorted NiO6 octahedron. This establishes a thermoelectric thermistor that can be used for sensing the thermal perturbations by integrating the two distinguished detection modes within one system: the active mode utilizing the high NTCR, and the passive mode utilizing the large S. It is worth noticing that as-achieved S-NTCR relationship in ReNiO3 differs form the one for conventional semiconductors, in which cases enlarging the band gap enlarges S but reduces NTCR. As achieved thermoelectric thermistor combing thermistor and thermoelectric functionalities via electron correlation opens up a new direction to explore emerging energy/electronic devices for sensing the thermal perturbations. The temperature range that keeps a high thermoelectric thermistor performance (i.e., |TCR | >2%K–1 and meanwhile S > 100 μVK–1) of ReNiO3 with a small rare-earth radius is possible to cover most of the outdoor conditions on earth (i.e., −50 to 150 °C).
doi_str_mv 10.1021/acsami.9b12609
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_9b12609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b280814853</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-7b6de04e6097b87107041fad15f50f956b60b31033c29ae8efa75c0bd29712a33</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKVs89IKbbjxM2xVGlBKg-hco42zkZ1m8bINkg9IPEL_CJfQmgqbpx2d3Z2NDuEXHI24kzwa9AetmaUlVykLDsiA55JGY1FIo7_eilPyZn3a8bSWLBkQD4mtPr-_LqBtqJ5gzo429KpdQ4bCFjR5Qrd1uJ-Y3Q_Gh-so7kPUDbGrzqWaek9BtgjSJ_Q2Xe_MQHprHPU7Kit6TM4jHJwYUUfjN7s5f05Oamh8XhxqEPyMsuX09to8Ti_m04WEQglQ6TKtEImsXtLlWPFmWKS11DxpE5YnSVpmbIy5iyOtcgAx1iDSjQrK5EpLiCOh2TU62pnvXdYF6_ObMHtCs6K3_CKPrziEF53cNUfdHixtm-u7ez9R_4BDCh0ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A d‑Band Electron Correlated Thermoelectric Thermistor Established in Metastable Perovskite Family of Rare-Earth Nickelates</title><source>American Chemical Society Journals</source><creator>Chen, Jikun ; Hu, Haiyang ; Wang, Jiaou ; Liu, Chen ; Liu, Xinling ; Li, Ziang ; Chen, Nuofu</creator><creatorcontrib>Chen, Jikun ; Hu, Haiyang ; Wang, Jiaou ; Liu, Chen ; Liu, Xinling ; Li, Ziang ; Chen, Nuofu</creatorcontrib><description>The d-band electron correlations shed a light on bridging multiple functionalities within one material system, and this further extends the horizon in material designs and their emerging device applications. Herein, we demonstrate the combination of thermoelectric and thermistor functionalities within the perovskite family of correlated rare-earth nickelates (ReNiO3) having small rare-earth elements (i.e., YNiO3 and DyNiO3), in addition to their already known metal-to-insulator transitions. In contrast to conventional semiconductive materials, the electronic band structure of ReNiO3 split within the hybridized Ni3d–O2p is closely coupled to the structure of NiO6 octahedron. Based on such a distinguished feature, it is possible to achieve the coexistence of a large magnitude of thermopower (S) and negative temperature coefficient of resistance (NTCR) in the insulating phase of ReNiO3 with small Re and more distorted NiO6 octahedron. This establishes a thermoelectric thermistor that can be used for sensing the thermal perturbations by integrating the two distinguished detection modes within one system: the active mode utilizing the high NTCR, and the passive mode utilizing the large S. It is worth noticing that as-achieved S-NTCR relationship in ReNiO3 differs form the one for conventional semiconductors, in which cases enlarging the band gap enlarges S but reduces NTCR. As achieved thermoelectric thermistor combing thermistor and thermoelectric functionalities via electron correlation opens up a new direction to explore emerging energy/electronic devices for sensing the thermal perturbations. The temperature range that keeps a high thermoelectric thermistor performance (i.e., |TCR | &gt;2%K–1 and meanwhile S &gt; 100 μVK–1) of ReNiO3 with a small rare-earth radius is possible to cover most of the outdoor conditions on earth (i.e., −50 to 150 °C).</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b12609</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-09, Vol.11 (37), p.34128-34134</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-7b6de04e6097b87107041fad15f50f956b60b31033c29ae8efa75c0bd29712a33</citedby><cites>FETCH-LOGICAL-a274t-7b6de04e6097b87107041fad15f50f956b60b31033c29ae8efa75c0bd29712a33</cites><orcidid>0000-0002-0351-6657 ; 0000-0002-9584-0699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b12609$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b12609$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Chen, Jikun</creatorcontrib><creatorcontrib>Hu, Haiyang</creatorcontrib><creatorcontrib>Wang, Jiaou</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Liu, Xinling</creatorcontrib><creatorcontrib>Li, Ziang</creatorcontrib><creatorcontrib>Chen, Nuofu</creatorcontrib><title>A d‑Band Electron Correlated Thermoelectric Thermistor Established in Metastable Perovskite Family of Rare-Earth Nickelates</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The d-band electron correlations shed a light on bridging multiple functionalities within one material system, and this further extends the horizon in material designs and their emerging device applications. Herein, we demonstrate the combination of thermoelectric and thermistor functionalities within the perovskite family of correlated rare-earth nickelates (ReNiO3) having small rare-earth elements (i.e., YNiO3 and DyNiO3), in addition to their already known metal-to-insulator transitions. In contrast to conventional semiconductive materials, the electronic band structure of ReNiO3 split within the hybridized Ni3d–O2p is closely coupled to the structure of NiO6 octahedron. Based on such a distinguished feature, it is possible to achieve the coexistence of a large magnitude of thermopower (S) and negative temperature coefficient of resistance (NTCR) in the insulating phase of ReNiO3 with small Re and more distorted NiO6 octahedron. This establishes a thermoelectric thermistor that can be used for sensing the thermal perturbations by integrating the two distinguished detection modes within one system: the active mode utilizing the high NTCR, and the passive mode utilizing the large S. It is worth noticing that as-achieved S-NTCR relationship in ReNiO3 differs form the one for conventional semiconductors, in which cases enlarging the band gap enlarges S but reduces NTCR. As achieved thermoelectric thermistor combing thermistor and thermoelectric functionalities via electron correlation opens up a new direction to explore emerging energy/electronic devices for sensing the thermal perturbations. The temperature range that keeps a high thermoelectric thermistor performance (i.e., |TCR | &gt;2%K–1 and meanwhile S &gt; 100 μVK–1) of ReNiO3 with a small rare-earth radius is possible to cover most of the outdoor conditions on earth (i.e., −50 to 150 °C).</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMKVs89IKbbjxM2xVGlBKg-hco42zkZ1m8bINkg9IPEL_CJfQmgqbpx2d3Z2NDuEXHI24kzwa9AetmaUlVykLDsiA55JGY1FIo7_eilPyZn3a8bSWLBkQD4mtPr-_LqBtqJ5gzo429KpdQ4bCFjR5Qrd1uJ-Y3Q_Gh-so7kPUDbGrzqWaek9BtgjSJ_Q2Xe_MQHprHPU7Kit6TM4jHJwYUUfjN7s5f05Oamh8XhxqEPyMsuX09to8Ti_m04WEQglQ6TKtEImsXtLlWPFmWKS11DxpE5YnSVpmbIy5iyOtcgAx1iDSjQrK5EpLiCOh2TU62pnvXdYF6_ObMHtCs6K3_CKPrziEF53cNUfdHixtm-u7ez9R_4BDCh0ZQ</recordid><startdate>20190918</startdate><enddate>20190918</enddate><creator>Chen, Jikun</creator><creator>Hu, Haiyang</creator><creator>Wang, Jiaou</creator><creator>Liu, Chen</creator><creator>Liu, Xinling</creator><creator>Li, Ziang</creator><creator>Chen, Nuofu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0351-6657</orcidid><orcidid>https://orcid.org/0000-0002-9584-0699</orcidid></search><sort><creationdate>20190918</creationdate><title>A d‑Band Electron Correlated Thermoelectric Thermistor Established in Metastable Perovskite Family of Rare-Earth Nickelates</title><author>Chen, Jikun ; Hu, Haiyang ; Wang, Jiaou ; Liu, Chen ; Liu, Xinling ; Li, Ziang ; Chen, Nuofu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-7b6de04e6097b87107041fad15f50f956b60b31033c29ae8efa75c0bd29712a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jikun</creatorcontrib><creatorcontrib>Hu, Haiyang</creatorcontrib><creatorcontrib>Wang, Jiaou</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Liu, Xinling</creatorcontrib><creatorcontrib>Li, Ziang</creatorcontrib><creatorcontrib>Chen, Nuofu</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jikun</au><au>Hu, Haiyang</au><au>Wang, Jiaou</au><au>Liu, Chen</au><au>Liu, Xinling</au><au>Li, Ziang</au><au>Chen, Nuofu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A d‑Band Electron Correlated Thermoelectric Thermistor Established in Metastable Perovskite Family of Rare-Earth Nickelates</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-09-18</date><risdate>2019</risdate><volume>11</volume><issue>37</issue><spage>34128</spage><epage>34134</epage><pages>34128-34134</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The d-band electron correlations shed a light on bridging multiple functionalities within one material system, and this further extends the horizon in material designs and their emerging device applications. Herein, we demonstrate the combination of thermoelectric and thermistor functionalities within the perovskite family of correlated rare-earth nickelates (ReNiO3) having small rare-earth elements (i.e., YNiO3 and DyNiO3), in addition to their already known metal-to-insulator transitions. In contrast to conventional semiconductive materials, the electronic band structure of ReNiO3 split within the hybridized Ni3d–O2p is closely coupled to the structure of NiO6 octahedron. Based on such a distinguished feature, it is possible to achieve the coexistence of a large magnitude of thermopower (S) and negative temperature coefficient of resistance (NTCR) in the insulating phase of ReNiO3 with small Re and more distorted NiO6 octahedron. This establishes a thermoelectric thermistor that can be used for sensing the thermal perturbations by integrating the two distinguished detection modes within one system: the active mode utilizing the high NTCR, and the passive mode utilizing the large S. It is worth noticing that as-achieved S-NTCR relationship in ReNiO3 differs form the one for conventional semiconductors, in which cases enlarging the band gap enlarges S but reduces NTCR. As achieved thermoelectric thermistor combing thermistor and thermoelectric functionalities via electron correlation opens up a new direction to explore emerging energy/electronic devices for sensing the thermal perturbations. The temperature range that keeps a high thermoelectric thermistor performance (i.e., |TCR | &gt;2%K–1 and meanwhile S &gt; 100 μVK–1) of ReNiO3 with a small rare-earth radius is possible to cover most of the outdoor conditions on earth (i.e., −50 to 150 °C).</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.9b12609</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0351-6657</orcidid><orcidid>https://orcid.org/0000-0002-9584-0699</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-09, Vol.11 (37), p.34128-34134
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_9b12609
source American Chemical Society Journals
title A d‑Band Electron Correlated Thermoelectric Thermistor Established in Metastable Perovskite Family of Rare-Earth Nickelates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20d%E2%80%91Band%20Electron%20Correlated%20Thermoelectric%20Thermistor%20Established%20in%20Metastable%20Perovskite%20Family%20of%20Rare-Earth%20Nickelates&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chen,%20Jikun&rft.date=2019-09-18&rft.volume=11&rft.issue=37&rft.spage=34128&rft.epage=34134&rft.pages=34128-34134&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b12609&rft_dat=%3Cacs_cross%3Eb280814853%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true