Photophysical Color Tuning for Photon Upconverting Nanoparticles

Generating a single higher-energy photon from several photons with lower energy, or photon upconversion, can have useful applications in renewable energy and biological imaging. However, efficient utilization of sub-bandgap infrared radiation in these optoelectronic devices requires high upconversio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-07, Vol.11 (30), p.27011-27016
Hauptverfasser: Sun, Qi-C, Ding, Yuchen, Nagpal, Prashant
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27016
container_issue 30
container_start_page 27011
container_title ACS applied materials & interfaces
container_volume 11
creator Sun, Qi-C
Ding, Yuchen
Nagpal, Prashant
description Generating a single higher-energy photon from several photons with lower energy, or photon upconversion, can have useful applications in renewable energy and biological imaging. However, efficient utilization of sub-bandgap infrared radiation in these optoelectronic devices requires high upconversion efficiency and precise tunability of emitted visible light. Although several studies have utilized chemical doping to tune the color of upconverted light, low upconversion efficiency can limit their applicability. In this study, color tuning of upconversion photoluminescence is successfully realized by modulating the photophysics using surface plasmon polaritons. Using absorption of near-infrared light in Yb3+ ions, the occupation of different energy states and the relative energy-transfer rate (from Yb3+ to Er3+ and Tm3+ dopants here) can be simultaneously tuned, with a complete shift in color emission using a chromaticity diagram. Furthermore, the efficacy of color tuning by transforming upconverted light (well matched to their enhanced bandedge absorption) into photocurrent is also demonstrated by using ultrathin two-dimensional semiconductor nanosheets. Therefore, photophysical color tuning and integration of these precisely tuned upconverting nanoparticles with ultrathin semiconductors can pave the way for designed metal nanostructures for highly efficient utilization of low-intensity sub-bandgap infrared radiation in optoelectronic devices.
doi_str_mv 10.1021/acsami.9b09284
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_9b09284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b161669931</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-2235289ee4ee90e5e0c5d15c5ca7e4138b41e21e89cd8fd9ffa9f90d17085ca3</originalsourceid><addsrcrecordid>eNp1kM1PwzAMxSMEYmNw5Yh6RupwvrbkBpr4kibgMM5VljqsU9dUyYq0_56Mjt04-cn-Pct-hFxTGFNg9M7YaDbVWC9BMyVOyJBqIXLFJDs9aiEG5CLGNcCEM5DnZMAp0zARekjuP1Z-69vVLlbW1NnM1z5ki66pmq_MJfk7brLP1vrmG8N2338zjW9N0rbGeEnOnKkjXh3qiCyeHhezl3z-_vw6e5jnhnPY5oxxyZRGFIgaUCJYWVJppTVTFJSrpaDIKCptS-VK7ZzRTkNJp6ASw0dk3K-1wccY0BVtqDYm7AoKxT6Jok-iOCSRDDe9oe2WGyyP-N_rCbjtgWQs1r4LTTr_v20_He9p5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photophysical Color Tuning for Photon Upconverting Nanoparticles</title><source>ACS Publications</source><creator>Sun, Qi-C ; Ding, Yuchen ; Nagpal, Prashant</creator><creatorcontrib>Sun, Qi-C ; Ding, Yuchen ; Nagpal, Prashant</creatorcontrib><description>Generating a single higher-energy photon from several photons with lower energy, or photon upconversion, can have useful applications in renewable energy and biological imaging. However, efficient utilization of sub-bandgap infrared radiation in these optoelectronic devices requires high upconversion efficiency and precise tunability of emitted visible light. Although several studies have utilized chemical doping to tune the color of upconverted light, low upconversion efficiency can limit their applicability. In this study, color tuning of upconversion photoluminescence is successfully realized by modulating the photophysics using surface plasmon polaritons. Using absorption of near-infrared light in Yb3+ ions, the occupation of different energy states and the relative energy-transfer rate (from Yb3+ to Er3+ and Tm3+ dopants here) can be simultaneously tuned, with a complete shift in color emission using a chromaticity diagram. Furthermore, the efficacy of color tuning by transforming upconverted light (well matched to their enhanced bandedge absorption) into photocurrent is also demonstrated by using ultrathin two-dimensional semiconductor nanosheets. Therefore, photophysical color tuning and integration of these precisely tuned upconverting nanoparticles with ultrathin semiconductors can pave the way for designed metal nanostructures for highly efficient utilization of low-intensity sub-bandgap infrared radiation in optoelectronic devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b09284</identifier><identifier>PMID: 31290649</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-07, Vol.11 (30), p.27011-27016</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-2235289ee4ee90e5e0c5d15c5ca7e4138b41e21e89cd8fd9ffa9f90d17085ca3</citedby><cites>FETCH-LOGICAL-a330t-2235289ee4ee90e5e0c5d15c5ca7e4138b41e21e89cd8fd9ffa9f90d17085ca3</cites><orcidid>0000-0002-7966-2554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b09284$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b09284$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31290649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Qi-C</creatorcontrib><creatorcontrib>Ding, Yuchen</creatorcontrib><creatorcontrib>Nagpal, Prashant</creatorcontrib><title>Photophysical Color Tuning for Photon Upconverting Nanoparticles</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Generating a single higher-energy photon from several photons with lower energy, or photon upconversion, can have useful applications in renewable energy and biological imaging. However, efficient utilization of sub-bandgap infrared radiation in these optoelectronic devices requires high upconversion efficiency and precise tunability of emitted visible light. Although several studies have utilized chemical doping to tune the color of upconverted light, low upconversion efficiency can limit their applicability. In this study, color tuning of upconversion photoluminescence is successfully realized by modulating the photophysics using surface plasmon polaritons. Using absorption of near-infrared light in Yb3+ ions, the occupation of different energy states and the relative energy-transfer rate (from Yb3+ to Er3+ and Tm3+ dopants here) can be simultaneously tuned, with a complete shift in color emission using a chromaticity diagram. Furthermore, the efficacy of color tuning by transforming upconverted light (well matched to their enhanced bandedge absorption) into photocurrent is also demonstrated by using ultrathin two-dimensional semiconductor nanosheets. Therefore, photophysical color tuning and integration of these precisely tuned upconverting nanoparticles with ultrathin semiconductors can pave the way for designed metal nanostructures for highly efficient utilization of low-intensity sub-bandgap infrared radiation in optoelectronic devices.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PwzAMxSMEYmNw5Yh6RupwvrbkBpr4kibgMM5VljqsU9dUyYq0_56Mjt04-cn-Pct-hFxTGFNg9M7YaDbVWC9BMyVOyJBqIXLFJDs9aiEG5CLGNcCEM5DnZMAp0zARekjuP1Z-69vVLlbW1NnM1z5ki66pmq_MJfk7brLP1vrmG8N2338zjW9N0rbGeEnOnKkjXh3qiCyeHhezl3z-_vw6e5jnhnPY5oxxyZRGFIgaUCJYWVJppTVTFJSrpaDIKCptS-VK7ZzRTkNJp6ASw0dk3K-1wccY0BVtqDYm7AoKxT6Jok-iOCSRDDe9oe2WGyyP-N_rCbjtgWQs1r4LTTr_v20_He9p5w</recordid><startdate>20190731</startdate><enddate>20190731</enddate><creator>Sun, Qi-C</creator><creator>Ding, Yuchen</creator><creator>Nagpal, Prashant</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7966-2554</orcidid></search><sort><creationdate>20190731</creationdate><title>Photophysical Color Tuning for Photon Upconverting Nanoparticles</title><author>Sun, Qi-C ; Ding, Yuchen ; Nagpal, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-2235289ee4ee90e5e0c5d15c5ca7e4138b41e21e89cd8fd9ffa9f90d17085ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Qi-C</creatorcontrib><creatorcontrib>Ding, Yuchen</creatorcontrib><creatorcontrib>Nagpal, Prashant</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Qi-C</au><au>Ding, Yuchen</au><au>Nagpal, Prashant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photophysical Color Tuning for Photon Upconverting Nanoparticles</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-07-31</date><risdate>2019</risdate><volume>11</volume><issue>30</issue><spage>27011</spage><epage>27016</epage><pages>27011-27016</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Generating a single higher-energy photon from several photons with lower energy, or photon upconversion, can have useful applications in renewable energy and biological imaging. However, efficient utilization of sub-bandgap infrared radiation in these optoelectronic devices requires high upconversion efficiency and precise tunability of emitted visible light. Although several studies have utilized chemical doping to tune the color of upconverted light, low upconversion efficiency can limit their applicability. In this study, color tuning of upconversion photoluminescence is successfully realized by modulating the photophysics using surface plasmon polaritons. Using absorption of near-infrared light in Yb3+ ions, the occupation of different energy states and the relative energy-transfer rate (from Yb3+ to Er3+ and Tm3+ dopants here) can be simultaneously tuned, with a complete shift in color emission using a chromaticity diagram. Furthermore, the efficacy of color tuning by transforming upconverted light (well matched to their enhanced bandedge absorption) into photocurrent is also demonstrated by using ultrathin two-dimensional semiconductor nanosheets. Therefore, photophysical color tuning and integration of these precisely tuned upconverting nanoparticles with ultrathin semiconductors can pave the way for designed metal nanostructures for highly efficient utilization of low-intensity sub-bandgap infrared radiation in optoelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31290649</pmid><doi>10.1021/acsami.9b09284</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7966-2554</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-07, Vol.11 (30), p.27011-27016
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_9b09284
source ACS Publications
title Photophysical Color Tuning for Photon Upconverting Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photophysical%20Color%20Tuning%20for%20Photon%20Upconverting%20Nanoparticles&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Sun,%20Qi-C&rft.date=2019-07-31&rft.volume=11&rft.issue=30&rft.spage=27011&rft.epage=27016&rft.pages=27011-27016&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b09284&rft_dat=%3Cacs_cross%3Eb161669931%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31290649&rfr_iscdi=true