Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization
Magnetic hyperthermia has a significant potential to be a new breakthrough for cancer treatment. The simple concept of nanoparticle-induced heating by the application of an alternating magnetic field has attracted much attention, as it allows the local heating of cancer cells, which are considered m...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-01, Vol.11 (1), p.340-355 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 1 |
container_start_page | 340 |
container_title | ACS applied materials & interfaces |
container_volume | 11 |
creator | Mejías, Raquel Hernández Flores, Patricia Talelli, Marina Tajada-Herráiz, José L Brollo, María E.F Portilla, Yadileiny Morales, María P Barber, Domingo F |
description | Magnetic hyperthermia has a significant potential to be a new breakthrough for cancer treatment. The simple concept of nanoparticle-induced heating by the application of an alternating magnetic field has attracted much attention, as it allows the local heating of cancer cells, which are considered more susceptible to hyperthermia than healthy cells, while avoiding the side effects of traditional hyperthermia. Despite the potential of this therapeutic approach, the idea that local heating effects due to the application of alternating magnetic fields on magnetic nanoparticle-loaded cancer cells can be used as a treatment is controversial. Several studies indicate that the heating capacity of magnetic nanoparticles is largely reduced in the cellular environment because of increased viscosity, aggregation, and dipolar interactions. However, an increasing number of studies, both in vitro and in vivo, show evidence of successful magnetic hyperthermia treatment on several different types of cancer cells. This apparent contradiction might be due to the use of different experimental conditions. Here, we analyze the effects of several parameters on the cytotoxic efficiency of magnetic nanoparticles as heat inductors under an alternating magnetic field. Our results indicate that the cell–nanoparticle interaction reduces the cytotoxic effects of magnetic hyperthermia, independent of nanoparticle coating and core size, the cell line used, and the subcellular localization of nanoparticles. However, there seems to occur a synergistic effect between the application of an external source of heat and the presence of magnetic nanoparticles, leading to higher toxicities than those induced by heat alone or the accumulation of nanoparticles within cells. |
doi_str_mv | 10.1021/acsami.8b18451 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_8b18451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a725854083</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-bc59d702cb3f79b85067b06f7052284e6b88218ad4891013462a85bdd2c51ebe3</originalsourceid><addsrcrecordid>eNp1kU9P3DAQxa2qqFDaa4-VzxVZbCdOnONq2-0iLVAJOEf-M0mDHDuyk8Py_fheuLtbJA5cZubwfm9G8xD6RsmCEkYvpY5y6BdCUVFw-gGd0booMsE4-_g6F8Up-hzjIyFlzgj_hE5zwhnPa3aGnldgbfYn-MFPYPCNdH6UYeq1BbzsugCdnHrv8E_QAWSE-EaSXTkz68RtdiOE6S-EoZd4dgYClg4v7QTBJQPX4WvZOUgQXvdgDU4gjJCKm-wO-_bt5pXfQxdpCIDv-ie4SH4G381Kp3tnKwPeei1t_7Q_7ws6aaWN8PXYz9HD-tf9apNtb39frZbbTOYVmTKleW0qwrTK26pWgpOyUqRsq_QOJgoolRCMCmkKUVNC86JkUnBlDNOcgoL8HC0Ovjr4GAO0zRj6QYZdQ0nzL4_mkEdzzCMB3w_AOKsBzKv8fwBJ8OMgSGDz6Of0Lhvfc3sBRSCaGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Mejías, Raquel ; Hernández Flores, Patricia ; Talelli, Marina ; Tajada-Herráiz, José L ; Brollo, María E.F ; Portilla, Yadileiny ; Morales, María P ; Barber, Domingo F</creator><creatorcontrib>Mejías, Raquel ; Hernández Flores, Patricia ; Talelli, Marina ; Tajada-Herráiz, José L ; Brollo, María E.F ; Portilla, Yadileiny ; Morales, María P ; Barber, Domingo F</creatorcontrib><description>Magnetic hyperthermia has a significant potential to be a new breakthrough for cancer treatment. The simple concept of nanoparticle-induced heating by the application of an alternating magnetic field has attracted much attention, as it allows the local heating of cancer cells, which are considered more susceptible to hyperthermia than healthy cells, while avoiding the side effects of traditional hyperthermia. Despite the potential of this therapeutic approach, the idea that local heating effects due to the application of alternating magnetic fields on magnetic nanoparticle-loaded cancer cells can be used as a treatment is controversial. Several studies indicate that the heating capacity of magnetic nanoparticles is largely reduced in the cellular environment because of increased viscosity, aggregation, and dipolar interactions. However, an increasing number of studies, both in vitro and in vivo, show evidence of successful magnetic hyperthermia treatment on several different types of cancer cells. This apparent contradiction might be due to the use of different experimental conditions. Here, we analyze the effects of several parameters on the cytotoxic efficiency of magnetic nanoparticles as heat inductors under an alternating magnetic field. Our results indicate that the cell–nanoparticle interaction reduces the cytotoxic effects of magnetic hyperthermia, independent of nanoparticle coating and core size, the cell line used, and the subcellular localization of nanoparticles. However, there seems to occur a synergistic effect between the application of an external source of heat and the presence of magnetic nanoparticles, leading to higher toxicities than those induced by heat alone or the accumulation of nanoparticles within cells.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b18451</identifier><identifier>PMID: 30525392</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cell Line, Tumor ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Hyperthermia, Induced - methods ; Magnetic Fields ; Magnetite Nanoparticles - chemistry ; Magnetite Nanoparticles - therapeutic use ; Mice ; Neoplasms - metabolism ; Neoplasms - pathology ; Neoplasms - therapy</subject><ispartof>ACS applied materials & interfaces, 2019-01, Vol.11 (1), p.340-355</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-bc59d702cb3f79b85067b06f7052284e6b88218ad4891013462a85bdd2c51ebe3</citedby><cites>FETCH-LOGICAL-a370t-bc59d702cb3f79b85067b06f7052284e6b88218ad4891013462a85bdd2c51ebe3</cites><orcidid>0000-0001-8824-5405 ; 0000-0002-6285-2204 ; 0000-0002-7290-7029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b18451$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b18451$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30525392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mejías, Raquel</creatorcontrib><creatorcontrib>Hernández Flores, Patricia</creatorcontrib><creatorcontrib>Talelli, Marina</creatorcontrib><creatorcontrib>Tajada-Herráiz, José L</creatorcontrib><creatorcontrib>Brollo, María E.F</creatorcontrib><creatorcontrib>Portilla, Yadileiny</creatorcontrib><creatorcontrib>Morales, María P</creatorcontrib><creatorcontrib>Barber, Domingo F</creatorcontrib><title>Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Magnetic hyperthermia has a significant potential to be a new breakthrough for cancer treatment. The simple concept of nanoparticle-induced heating by the application of an alternating magnetic field has attracted much attention, as it allows the local heating of cancer cells, which are considered more susceptible to hyperthermia than healthy cells, while avoiding the side effects of traditional hyperthermia. Despite the potential of this therapeutic approach, the idea that local heating effects due to the application of alternating magnetic fields on magnetic nanoparticle-loaded cancer cells can be used as a treatment is controversial. Several studies indicate that the heating capacity of magnetic nanoparticles is largely reduced in the cellular environment because of increased viscosity, aggregation, and dipolar interactions. However, an increasing number of studies, both in vitro and in vivo, show evidence of successful magnetic hyperthermia treatment on several different types of cancer cells. This apparent contradiction might be due to the use of different experimental conditions. Here, we analyze the effects of several parameters on the cytotoxic efficiency of magnetic nanoparticles as heat inductors under an alternating magnetic field. Our results indicate that the cell–nanoparticle interaction reduces the cytotoxic effects of magnetic hyperthermia, independent of nanoparticle coating and core size, the cell line used, and the subcellular localization of nanoparticles. However, there seems to occur a synergistic effect between the application of an external source of heat and the presence of magnetic nanoparticles, leading to higher toxicities than those induced by heat alone or the accumulation of nanoparticles within cells.</description><subject>Animals</subject><subject>Cell Line, Tumor</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Hyperthermia, Induced - methods</subject><subject>Magnetic Fields</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Magnetite Nanoparticles - therapeutic use</subject><subject>Mice</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Neoplasms - therapy</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9P3DAQxa2qqFDaa4-VzxVZbCdOnONq2-0iLVAJOEf-M0mDHDuyk8Py_fheuLtbJA5cZubwfm9G8xD6RsmCEkYvpY5y6BdCUVFw-gGd0booMsE4-_g6F8Up-hzjIyFlzgj_hE5zwhnPa3aGnldgbfYn-MFPYPCNdH6UYeq1BbzsugCdnHrv8E_QAWSE-EaSXTkz68RtdiOE6S-EoZd4dgYClg4v7QTBJQPX4WvZOUgQXvdgDU4gjJCKm-wO-_bt5pXfQxdpCIDv-ie4SH4G381Kp3tnKwPeei1t_7Q_7ws6aaWN8PXYz9HD-tf9apNtb39frZbbTOYVmTKleW0qwrTK26pWgpOyUqRsq_QOJgoolRCMCmkKUVNC86JkUnBlDNOcgoL8HC0Ovjr4GAO0zRj6QYZdQ0nzL4_mkEdzzCMB3w_AOKsBzKv8fwBJ8OMgSGDz6Of0Lhvfc3sBRSCaGQ</recordid><startdate>20190109</startdate><enddate>20190109</enddate><creator>Mejías, Raquel</creator><creator>Hernández Flores, Patricia</creator><creator>Talelli, Marina</creator><creator>Tajada-Herráiz, José L</creator><creator>Brollo, María E.F</creator><creator>Portilla, Yadileiny</creator><creator>Morales, María P</creator><creator>Barber, Domingo F</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8824-5405</orcidid><orcidid>https://orcid.org/0000-0002-6285-2204</orcidid><orcidid>https://orcid.org/0000-0002-7290-7029</orcidid></search><sort><creationdate>20190109</creationdate><title>Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization</title><author>Mejías, Raquel ; Hernández Flores, Patricia ; Talelli, Marina ; Tajada-Herráiz, José L ; Brollo, María E.F ; Portilla, Yadileiny ; Morales, María P ; Barber, Domingo F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-bc59d702cb3f79b85067b06f7052284e6b88218ad4891013462a85bdd2c51ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell Line, Tumor</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Hyperthermia, Induced - methods</topic><topic>Magnetic Fields</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Magnetite Nanoparticles - therapeutic use</topic><topic>Mice</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Neoplasms - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mejías, Raquel</creatorcontrib><creatorcontrib>Hernández Flores, Patricia</creatorcontrib><creatorcontrib>Talelli, Marina</creatorcontrib><creatorcontrib>Tajada-Herráiz, José L</creatorcontrib><creatorcontrib>Brollo, María E.F</creatorcontrib><creatorcontrib>Portilla, Yadileiny</creatorcontrib><creatorcontrib>Morales, María P</creatorcontrib><creatorcontrib>Barber, Domingo F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mejías, Raquel</au><au>Hernández Flores, Patricia</au><au>Talelli, Marina</au><au>Tajada-Herráiz, José L</au><au>Brollo, María E.F</au><au>Portilla, Yadileiny</au><au>Morales, María P</au><au>Barber, Domingo F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-01-09</date><risdate>2019</risdate><volume>11</volume><issue>1</issue><spage>340</spage><epage>355</epage><pages>340-355</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Magnetic hyperthermia has a significant potential to be a new breakthrough for cancer treatment. The simple concept of nanoparticle-induced heating by the application of an alternating magnetic field has attracted much attention, as it allows the local heating of cancer cells, which are considered more susceptible to hyperthermia than healthy cells, while avoiding the side effects of traditional hyperthermia. Despite the potential of this therapeutic approach, the idea that local heating effects due to the application of alternating magnetic fields on magnetic nanoparticle-loaded cancer cells can be used as a treatment is controversial. Several studies indicate that the heating capacity of magnetic nanoparticles is largely reduced in the cellular environment because of increased viscosity, aggregation, and dipolar interactions. However, an increasing number of studies, both in vitro and in vivo, show evidence of successful magnetic hyperthermia treatment on several different types of cancer cells. This apparent contradiction might be due to the use of different experimental conditions. Here, we analyze the effects of several parameters on the cytotoxic efficiency of magnetic nanoparticles as heat inductors under an alternating magnetic field. Our results indicate that the cell–nanoparticle interaction reduces the cytotoxic effects of magnetic hyperthermia, independent of nanoparticle coating and core size, the cell line used, and the subcellular localization of nanoparticles. However, there seems to occur a synergistic effect between the application of an external source of heat and the presence of magnetic nanoparticles, leading to higher toxicities than those induced by heat alone or the accumulation of nanoparticles within cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30525392</pmid><doi>10.1021/acsami.8b18451</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8824-5405</orcidid><orcidid>https://orcid.org/0000-0002-6285-2204</orcidid><orcidid>https://orcid.org/0000-0002-7290-7029</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2019-01, Vol.11 (1), p.340-355 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_8b18451 |
source | MEDLINE; American Chemical Society Journals |
subjects | Animals Cell Line, Tumor Coated Materials, Biocompatible - chemistry Coated Materials, Biocompatible - pharmacology Hyperthermia, Induced - methods Magnetic Fields Magnetite Nanoparticles - chemistry Magnetite Nanoparticles - therapeutic use Mice Neoplasms - metabolism Neoplasms - pathology Neoplasms - therapy |
title | Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-Promoted%20Nanoparticle%20Aggregation%20Decreases%20Nanoparticle-Induced%20Hyperthermia%20under%20an%20Alternating%20Magnetic%20Field%20Independently%20of%20Nanoparticle%20Coating,%20Core%20Size,%20and%20Subcellular%20Localization&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Meji%CC%81as,%20Raquel&rft.date=2019-01-09&rft.volume=11&rft.issue=1&rft.spage=340&rft.epage=355&rft.pages=340-355&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b18451&rft_dat=%3Cacs_cross%3Ea725854083%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30525392&rfr_iscdi=true |