Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization

Magnetic hyperthermia has a significant potential to be a new breakthrough for cancer treatment. The simple concept of nanoparticle-induced heating by the application of an alternating magnetic field has attracted much attention, as it allows the local heating of cancer cells, which are considered m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-01, Vol.11 (1), p.340-355
Hauptverfasser: Mejías, Raquel, Hernández Flores, Patricia, Talelli, Marina, Tajada-Herráiz, José L, Brollo, María E.F, Portilla, Yadileiny, Morales, María P, Barber, Domingo F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 1
container_start_page 340
container_title ACS applied materials & interfaces
container_volume 11
creator Mejías, Raquel
Hernández Flores, Patricia
Talelli, Marina
Tajada-Herráiz, José L
Brollo, María E.F
Portilla, Yadileiny
Morales, María P
Barber, Domingo F
description Magnetic hyperthermia has a significant potential to be a new breakthrough for cancer treatment. The simple concept of nanoparticle-induced heating by the application of an alternating magnetic field has attracted much attention, as it allows the local heating of cancer cells, which are considered more susceptible to hyperthermia than healthy cells, while avoiding the side effects of traditional hyperthermia. Despite the potential of this therapeutic approach, the idea that local heating effects due to the application of alternating magnetic fields on magnetic nanoparticle-loaded cancer cells can be used as a treatment is controversial. Several studies indicate that the heating capacity of magnetic nanoparticles is largely reduced in the cellular environment because of increased viscosity, aggregation, and dipolar interactions. However, an increasing number of studies, both in vitro and in vivo, show evidence of successful magnetic hyperthermia treatment on several different types of cancer cells. This apparent contradiction might be due to the use of different experimental conditions. Here, we analyze the effects of several parameters on the cytotoxic efficiency of magnetic nanoparticles as heat inductors under an alternating magnetic field. Our results indicate that the cell–nanoparticle interaction reduces the cytotoxic effects of magnetic hyperthermia, independent of nanoparticle coating and core size, the cell line used, and the subcellular localization of nanoparticles. However, there seems to occur a synergistic effect between the application of an external source of heat and the presence of magnetic nanoparticles, leading to higher toxicities than those induced by heat alone or the accumulation of nanoparticles within cells.
doi_str_mv 10.1021/acsami.8b18451
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_8b18451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a725854083</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-bc59d702cb3f79b85067b06f7052284e6b88218ad4891013462a85bdd2c51ebe3</originalsourceid><addsrcrecordid>eNp1kU9P3DAQxa2qqFDaa4-VzxVZbCdOnONq2-0iLVAJOEf-M0mDHDuyk8Py_fheuLtbJA5cZubwfm9G8xD6RsmCEkYvpY5y6BdCUVFw-gGd0booMsE4-_g6F8Up-hzjIyFlzgj_hE5zwhnPa3aGnldgbfYn-MFPYPCNdH6UYeq1BbzsugCdnHrv8E_QAWSE-EaSXTkz68RtdiOE6S-EoZd4dgYClg4v7QTBJQPX4WvZOUgQXvdgDU4gjJCKm-wO-_bt5pXfQxdpCIDv-ie4SH4G381Kp3tnKwPeei1t_7Q_7ws6aaWN8PXYz9HD-tf9apNtb39frZbbTOYVmTKleW0qwrTK26pWgpOyUqRsq_QOJgoolRCMCmkKUVNC86JkUnBlDNOcgoL8HC0Ovjr4GAO0zRj6QYZdQ0nzL4_mkEdzzCMB3w_AOKsBzKv8fwBJ8OMgSGDz6Of0Lhvfc3sBRSCaGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Mejías, Raquel ; Hernández Flores, Patricia ; Talelli, Marina ; Tajada-Herráiz, José L ; Brollo, María E.F ; Portilla, Yadileiny ; Morales, María P ; Barber, Domingo F</creator><creatorcontrib>Mejías, Raquel ; Hernández Flores, Patricia ; Talelli, Marina ; Tajada-Herráiz, José L ; Brollo, María E.F ; Portilla, Yadileiny ; Morales, María P ; Barber, Domingo F</creatorcontrib><description>Magnetic hyperthermia has a significant potential to be a new breakthrough for cancer treatment. The simple concept of nanoparticle-induced heating by the application of an alternating magnetic field has attracted much attention, as it allows the local heating of cancer cells, which are considered more susceptible to hyperthermia than healthy cells, while avoiding the side effects of traditional hyperthermia. Despite the potential of this therapeutic approach, the idea that local heating effects due to the application of alternating magnetic fields on magnetic nanoparticle-loaded cancer cells can be used as a treatment is controversial. Several studies indicate that the heating capacity of magnetic nanoparticles is largely reduced in the cellular environment because of increased viscosity, aggregation, and dipolar interactions. However, an increasing number of studies, both in vitro and in vivo, show evidence of successful magnetic hyperthermia treatment on several different types of cancer cells. This apparent contradiction might be due to the use of different experimental conditions. Here, we analyze the effects of several parameters on the cytotoxic efficiency of magnetic nanoparticles as heat inductors under an alternating magnetic field. Our results indicate that the cell–nanoparticle interaction reduces the cytotoxic effects of magnetic hyperthermia, independent of nanoparticle coating and core size, the cell line used, and the subcellular localization of nanoparticles. However, there seems to occur a synergistic effect between the application of an external source of heat and the presence of magnetic nanoparticles, leading to higher toxicities than those induced by heat alone or the accumulation of nanoparticles within cells.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b18451</identifier><identifier>PMID: 30525392</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cell Line, Tumor ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Hyperthermia, Induced - methods ; Magnetic Fields ; Magnetite Nanoparticles - chemistry ; Magnetite Nanoparticles - therapeutic use ; Mice ; Neoplasms - metabolism ; Neoplasms - pathology ; Neoplasms - therapy</subject><ispartof>ACS applied materials &amp; interfaces, 2019-01, Vol.11 (1), p.340-355</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-bc59d702cb3f79b85067b06f7052284e6b88218ad4891013462a85bdd2c51ebe3</citedby><cites>FETCH-LOGICAL-a370t-bc59d702cb3f79b85067b06f7052284e6b88218ad4891013462a85bdd2c51ebe3</cites><orcidid>0000-0001-8824-5405 ; 0000-0002-6285-2204 ; 0000-0002-7290-7029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b18451$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b18451$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30525392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mejías, Raquel</creatorcontrib><creatorcontrib>Hernández Flores, Patricia</creatorcontrib><creatorcontrib>Talelli, Marina</creatorcontrib><creatorcontrib>Tajada-Herráiz, José L</creatorcontrib><creatorcontrib>Brollo, María E.F</creatorcontrib><creatorcontrib>Portilla, Yadileiny</creatorcontrib><creatorcontrib>Morales, María P</creatorcontrib><creatorcontrib>Barber, Domingo F</creatorcontrib><title>Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Magnetic hyperthermia has a significant potential to be a new breakthrough for cancer treatment. The simple concept of nanoparticle-induced heating by the application of an alternating magnetic field has attracted much attention, as it allows the local heating of cancer cells, which are considered more susceptible to hyperthermia than healthy cells, while avoiding the side effects of traditional hyperthermia. Despite the potential of this therapeutic approach, the idea that local heating effects due to the application of alternating magnetic fields on magnetic nanoparticle-loaded cancer cells can be used as a treatment is controversial. Several studies indicate that the heating capacity of magnetic nanoparticles is largely reduced in the cellular environment because of increased viscosity, aggregation, and dipolar interactions. However, an increasing number of studies, both in vitro and in vivo, show evidence of successful magnetic hyperthermia treatment on several different types of cancer cells. This apparent contradiction might be due to the use of different experimental conditions. Here, we analyze the effects of several parameters on the cytotoxic efficiency of magnetic nanoparticles as heat inductors under an alternating magnetic field. Our results indicate that the cell–nanoparticle interaction reduces the cytotoxic effects of magnetic hyperthermia, independent of nanoparticle coating and core size, the cell line used, and the subcellular localization of nanoparticles. However, there seems to occur a synergistic effect between the application of an external source of heat and the presence of magnetic nanoparticles, leading to higher toxicities than those induced by heat alone or the accumulation of nanoparticles within cells.</description><subject>Animals</subject><subject>Cell Line, Tumor</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Hyperthermia, Induced - methods</subject><subject>Magnetic Fields</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Magnetite Nanoparticles - therapeutic use</subject><subject>Mice</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Neoplasms - therapy</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9P3DAQxa2qqFDaa4-VzxVZbCdOnONq2-0iLVAJOEf-M0mDHDuyk8Py_fheuLtbJA5cZubwfm9G8xD6RsmCEkYvpY5y6BdCUVFw-gGd0booMsE4-_g6F8Up-hzjIyFlzgj_hE5zwhnPa3aGnldgbfYn-MFPYPCNdH6UYeq1BbzsugCdnHrv8E_QAWSE-EaSXTkz68RtdiOE6S-EoZd4dgYClg4v7QTBJQPX4WvZOUgQXvdgDU4gjJCKm-wO-_bt5pXfQxdpCIDv-ie4SH4G381Kp3tnKwPeei1t_7Q_7ws6aaWN8PXYz9HD-tf9apNtb39frZbbTOYVmTKleW0qwrTK26pWgpOyUqRsq_QOJgoolRCMCmkKUVNC86JkUnBlDNOcgoL8HC0Ovjr4GAO0zRj6QYZdQ0nzL4_mkEdzzCMB3w_AOKsBzKv8fwBJ8OMgSGDz6Of0Lhvfc3sBRSCaGQ</recordid><startdate>20190109</startdate><enddate>20190109</enddate><creator>Mejías, Raquel</creator><creator>Hernández Flores, Patricia</creator><creator>Talelli, Marina</creator><creator>Tajada-Herráiz, José L</creator><creator>Brollo, María E.F</creator><creator>Portilla, Yadileiny</creator><creator>Morales, María P</creator><creator>Barber, Domingo F</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8824-5405</orcidid><orcidid>https://orcid.org/0000-0002-6285-2204</orcidid><orcidid>https://orcid.org/0000-0002-7290-7029</orcidid></search><sort><creationdate>20190109</creationdate><title>Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization</title><author>Mejías, Raquel ; Hernández Flores, Patricia ; Talelli, Marina ; Tajada-Herráiz, José L ; Brollo, María E.F ; Portilla, Yadileiny ; Morales, María P ; Barber, Domingo F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-bc59d702cb3f79b85067b06f7052284e6b88218ad4891013462a85bdd2c51ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell Line, Tumor</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Hyperthermia, Induced - methods</topic><topic>Magnetic Fields</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Magnetite Nanoparticles - therapeutic use</topic><topic>Mice</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Neoplasms - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mejías, Raquel</creatorcontrib><creatorcontrib>Hernández Flores, Patricia</creatorcontrib><creatorcontrib>Talelli, Marina</creatorcontrib><creatorcontrib>Tajada-Herráiz, José L</creatorcontrib><creatorcontrib>Brollo, María E.F</creatorcontrib><creatorcontrib>Portilla, Yadileiny</creatorcontrib><creatorcontrib>Morales, María P</creatorcontrib><creatorcontrib>Barber, Domingo F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mejías, Raquel</au><au>Hernández Flores, Patricia</au><au>Talelli, Marina</au><au>Tajada-Herráiz, José L</au><au>Brollo, María E.F</au><au>Portilla, Yadileiny</au><au>Morales, María P</au><au>Barber, Domingo F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-01-09</date><risdate>2019</risdate><volume>11</volume><issue>1</issue><spage>340</spage><epage>355</epage><pages>340-355</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Magnetic hyperthermia has a significant potential to be a new breakthrough for cancer treatment. The simple concept of nanoparticle-induced heating by the application of an alternating magnetic field has attracted much attention, as it allows the local heating of cancer cells, which are considered more susceptible to hyperthermia than healthy cells, while avoiding the side effects of traditional hyperthermia. Despite the potential of this therapeutic approach, the idea that local heating effects due to the application of alternating magnetic fields on magnetic nanoparticle-loaded cancer cells can be used as a treatment is controversial. Several studies indicate that the heating capacity of magnetic nanoparticles is largely reduced in the cellular environment because of increased viscosity, aggregation, and dipolar interactions. However, an increasing number of studies, both in vitro and in vivo, show evidence of successful magnetic hyperthermia treatment on several different types of cancer cells. This apparent contradiction might be due to the use of different experimental conditions. Here, we analyze the effects of several parameters on the cytotoxic efficiency of magnetic nanoparticles as heat inductors under an alternating magnetic field. Our results indicate that the cell–nanoparticle interaction reduces the cytotoxic effects of magnetic hyperthermia, independent of nanoparticle coating and core size, the cell line used, and the subcellular localization of nanoparticles. However, there seems to occur a synergistic effect between the application of an external source of heat and the presence of magnetic nanoparticles, leading to higher toxicities than those induced by heat alone or the accumulation of nanoparticles within cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30525392</pmid><doi>10.1021/acsami.8b18451</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8824-5405</orcidid><orcidid>https://orcid.org/0000-0002-6285-2204</orcidid><orcidid>https://orcid.org/0000-0002-7290-7029</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-01, Vol.11 (1), p.340-355
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_8b18451
source MEDLINE; American Chemical Society Journals
subjects Animals
Cell Line, Tumor
Coated Materials, Biocompatible - chemistry
Coated Materials, Biocompatible - pharmacology
Hyperthermia, Induced - methods
Magnetic Fields
Magnetite Nanoparticles - chemistry
Magnetite Nanoparticles - therapeutic use
Mice
Neoplasms - metabolism
Neoplasms - pathology
Neoplasms - therapy
title Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-Promoted%20Nanoparticle%20Aggregation%20Decreases%20Nanoparticle-Induced%20Hyperthermia%20under%20an%20Alternating%20Magnetic%20Field%20Independently%20of%20Nanoparticle%20Coating,%20Core%20Size,%20and%20Subcellular%20Localization&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Meji%CC%81as,%20Raquel&rft.date=2019-01-09&rft.volume=11&rft.issue=1&rft.spage=340&rft.epage=355&rft.pages=340-355&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b18451&rft_dat=%3Cacs_cross%3Ea725854083%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30525392&rfr_iscdi=true