Heterogeneously Catalyzed Aerobic Oxidation of Sulfides with a BaRuO 3 Nanoperovskite

A rhombohedral BaRuO nanoperovskite, which was synthesized by the sol-gel method using malic acid, could act as an efficient heterogeneous catalyst for the selective oxidation of various aromatic and aliphatic sulfides with molecular oxygen as the sole oxidant. BaRuO showed much higher catalytic act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-07, Vol.10 (28), p.23792-23801
Hauptverfasser: Kamata, Keigo, Sugahara, Kosei, Kato, Yuuki, Muratsugu, Satoshi, Kumagai, Yu, Oba, Fumiyasu, Hara, Michikazu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23801
container_issue 28
container_start_page 23792
container_title ACS applied materials & interfaces
container_volume 10
creator Kamata, Keigo
Sugahara, Kosei
Kato, Yuuki
Muratsugu, Satoshi
Kumagai, Yu
Oba, Fumiyasu
Hara, Michikazu
description A rhombohedral BaRuO nanoperovskite, which was synthesized by the sol-gel method using malic acid, could act as an efficient heterogeneous catalyst for the selective oxidation of various aromatic and aliphatic sulfides with molecular oxygen as the sole oxidant. BaRuO showed much higher catalytic activities than other catalysts, including ruthenium-based perovskite oxides, under mild reaction conditions. The catalyst could be recovered by simple filtration and reused several times without obvious loss of its high catalytic performance. The catalyst effect, O-labeling experiments, and kinetic and mechanistic studies showed that substrate oxidation proceeds with oxygen species caused by the solid. The crystal structure of ruthenium-based oxides is crucial to control the nature of the oxygen atoms and significantly affects their oxygen transfer reactivity. Density functional theory calculations revealed that the face-sharing octahedra in BaRuO likely are possible active sites in the present oxidation in sharp contrast to the corner-sharing octahedra in SrRuO , CaRuO , and RuO . The superior oxygen transfer ability of BaRuO is also applicable to the quantitative conversion of dibenzothiophene into the corresponding sulfone and gram-scale oxidation of 4-methoxy thioanisole, in which 1.20 g (71% yield) of the analytically pure sulfoxide could be isolated.
doi_str_mv 10.1021/acsami.8b05343
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_8b05343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29983051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1071-dbfc88207a49e8a77ea0c288e04fe070960f6be44ca78e4f46c7e5f3d695acea3</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EoqVw5Yj8Awnr2ImdY6mAIlVUAnqONs4aDGlTxQlQvp6ilp52tJo3h8fYpYBYQCKu0QZc-tiUkEolj9hQ5EpFJkmT40NWasDOQngHyGQC6SkbJHluJKRiyBZT6qhtXmlFTR_qDZ9gh_Xmhyo-3v5Lb_n821fY-WbFG8ef-9r5igL_8t0bR36DT_2cS_6Iq2a9BT7Dh-_onJ04rANd7O-ILe5uXybTaDa_f5iMZ5EVoEVUlc4ak4BGlZNBrQnBJsYQKEegIc_AZSUpZVEbUk5lVlPqZJXlKVpCOWLxbte2TQgtuWLd-iW2m0JA8een2Pkp9n62wNUOWPflkqpD_V-I_AV85GNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heterogeneously Catalyzed Aerobic Oxidation of Sulfides with a BaRuO 3 Nanoperovskite</title><source>ACS Publications</source><creator>Kamata, Keigo ; Sugahara, Kosei ; Kato, Yuuki ; Muratsugu, Satoshi ; Kumagai, Yu ; Oba, Fumiyasu ; Hara, Michikazu</creator><creatorcontrib>Kamata, Keigo ; Sugahara, Kosei ; Kato, Yuuki ; Muratsugu, Satoshi ; Kumagai, Yu ; Oba, Fumiyasu ; Hara, Michikazu</creatorcontrib><description>A rhombohedral BaRuO nanoperovskite, which was synthesized by the sol-gel method using malic acid, could act as an efficient heterogeneous catalyst for the selective oxidation of various aromatic and aliphatic sulfides with molecular oxygen as the sole oxidant. BaRuO showed much higher catalytic activities than other catalysts, including ruthenium-based perovskite oxides, under mild reaction conditions. The catalyst could be recovered by simple filtration and reused several times without obvious loss of its high catalytic performance. The catalyst effect, O-labeling experiments, and kinetic and mechanistic studies showed that substrate oxidation proceeds with oxygen species caused by the solid. The crystal structure of ruthenium-based oxides is crucial to control the nature of the oxygen atoms and significantly affects their oxygen transfer reactivity. Density functional theory calculations revealed that the face-sharing octahedra in BaRuO likely are possible active sites in the present oxidation in sharp contrast to the corner-sharing octahedra in SrRuO , CaRuO , and RuO . The superior oxygen transfer ability of BaRuO is also applicable to the quantitative conversion of dibenzothiophene into the corresponding sulfone and gram-scale oxidation of 4-methoxy thioanisole, in which 1.20 g (71% yield) of the analytically pure sulfoxide could be isolated.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b05343</identifier><identifier>PMID: 29983051</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-07, Vol.10 (28), p.23792-23801</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1071-dbfc88207a49e8a77ea0c288e04fe070960f6be44ca78e4f46c7e5f3d695acea3</citedby><cites>FETCH-LOGICAL-c1071-dbfc88207a49e8a77ea0c288e04fe070960f6be44ca78e4f46c7e5f3d695acea3</cites><orcidid>0000-0002-0624-8483 ; 0000-0001-7178-5333 ; 0000-0003-3450-5704 ; 0000-0002-3596-7380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2751,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29983051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamata, Keigo</creatorcontrib><creatorcontrib>Sugahara, Kosei</creatorcontrib><creatorcontrib>Kato, Yuuki</creatorcontrib><creatorcontrib>Muratsugu, Satoshi</creatorcontrib><creatorcontrib>Kumagai, Yu</creatorcontrib><creatorcontrib>Oba, Fumiyasu</creatorcontrib><creatorcontrib>Hara, Michikazu</creatorcontrib><title>Heterogeneously Catalyzed Aerobic Oxidation of Sulfides with a BaRuO 3 Nanoperovskite</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>A rhombohedral BaRuO nanoperovskite, which was synthesized by the sol-gel method using malic acid, could act as an efficient heterogeneous catalyst for the selective oxidation of various aromatic and aliphatic sulfides with molecular oxygen as the sole oxidant. BaRuO showed much higher catalytic activities than other catalysts, including ruthenium-based perovskite oxides, under mild reaction conditions. The catalyst could be recovered by simple filtration and reused several times without obvious loss of its high catalytic performance. The catalyst effect, O-labeling experiments, and kinetic and mechanistic studies showed that substrate oxidation proceeds with oxygen species caused by the solid. The crystal structure of ruthenium-based oxides is crucial to control the nature of the oxygen atoms and significantly affects their oxygen transfer reactivity. Density functional theory calculations revealed that the face-sharing octahedra in BaRuO likely are possible active sites in the present oxidation in sharp contrast to the corner-sharing octahedra in SrRuO , CaRuO , and RuO . The superior oxygen transfer ability of BaRuO is also applicable to the quantitative conversion of dibenzothiophene into the corresponding sulfone and gram-scale oxidation of 4-methoxy thioanisole, in which 1.20 g (71% yield) of the analytically pure sulfoxide could be isolated.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAQRC0EoqVw5Yj8Awnr2ImdY6mAIlVUAnqONs4aDGlTxQlQvp6ilp52tJo3h8fYpYBYQCKu0QZc-tiUkEolj9hQ5EpFJkmT40NWasDOQngHyGQC6SkbJHluJKRiyBZT6qhtXmlFTR_qDZ9gh_Xmhyo-3v5Lb_n821fY-WbFG8ef-9r5igL_8t0bR36DT_2cS_6Iq2a9BT7Dh-_onJ04rANd7O-ILe5uXybTaDa_f5iMZ5EVoEVUlc4ak4BGlZNBrQnBJsYQKEegIc_AZSUpZVEbUk5lVlPqZJXlKVpCOWLxbte2TQgtuWLd-iW2m0JA8een2Pkp9n62wNUOWPflkqpD_V-I_AV85GNk</recordid><startdate>20180718</startdate><enddate>20180718</enddate><creator>Kamata, Keigo</creator><creator>Sugahara, Kosei</creator><creator>Kato, Yuuki</creator><creator>Muratsugu, Satoshi</creator><creator>Kumagai, Yu</creator><creator>Oba, Fumiyasu</creator><creator>Hara, Michikazu</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0624-8483</orcidid><orcidid>https://orcid.org/0000-0001-7178-5333</orcidid><orcidid>https://orcid.org/0000-0003-3450-5704</orcidid><orcidid>https://orcid.org/0000-0002-3596-7380</orcidid></search><sort><creationdate>20180718</creationdate><title>Heterogeneously Catalyzed Aerobic Oxidation of Sulfides with a BaRuO 3 Nanoperovskite</title><author>Kamata, Keigo ; Sugahara, Kosei ; Kato, Yuuki ; Muratsugu, Satoshi ; Kumagai, Yu ; Oba, Fumiyasu ; Hara, Michikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1071-dbfc88207a49e8a77ea0c288e04fe070960f6be44ca78e4f46c7e5f3d695acea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamata, Keigo</creatorcontrib><creatorcontrib>Sugahara, Kosei</creatorcontrib><creatorcontrib>Kato, Yuuki</creatorcontrib><creatorcontrib>Muratsugu, Satoshi</creatorcontrib><creatorcontrib>Kumagai, Yu</creatorcontrib><creatorcontrib>Oba, Fumiyasu</creatorcontrib><creatorcontrib>Hara, Michikazu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamata, Keigo</au><au>Sugahara, Kosei</au><au>Kato, Yuuki</au><au>Muratsugu, Satoshi</au><au>Kumagai, Yu</au><au>Oba, Fumiyasu</au><au>Hara, Michikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneously Catalyzed Aerobic Oxidation of Sulfides with a BaRuO 3 Nanoperovskite</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2018-07-18</date><risdate>2018</risdate><volume>10</volume><issue>28</issue><spage>23792</spage><epage>23801</epage><pages>23792-23801</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A rhombohedral BaRuO nanoperovskite, which was synthesized by the sol-gel method using malic acid, could act as an efficient heterogeneous catalyst for the selective oxidation of various aromatic and aliphatic sulfides with molecular oxygen as the sole oxidant. BaRuO showed much higher catalytic activities than other catalysts, including ruthenium-based perovskite oxides, under mild reaction conditions. The catalyst could be recovered by simple filtration and reused several times without obvious loss of its high catalytic performance. The catalyst effect, O-labeling experiments, and kinetic and mechanistic studies showed that substrate oxidation proceeds with oxygen species caused by the solid. The crystal structure of ruthenium-based oxides is crucial to control the nature of the oxygen atoms and significantly affects their oxygen transfer reactivity. Density functional theory calculations revealed that the face-sharing octahedra in BaRuO likely are possible active sites in the present oxidation in sharp contrast to the corner-sharing octahedra in SrRuO , CaRuO , and RuO . The superior oxygen transfer ability of BaRuO is also applicable to the quantitative conversion of dibenzothiophene into the corresponding sulfone and gram-scale oxidation of 4-methoxy thioanisole, in which 1.20 g (71% yield) of the analytically pure sulfoxide could be isolated.</abstract><cop>United States</cop><pmid>29983051</pmid><doi>10.1021/acsami.8b05343</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0624-8483</orcidid><orcidid>https://orcid.org/0000-0001-7178-5333</orcidid><orcidid>https://orcid.org/0000-0003-3450-5704</orcidid><orcidid>https://orcid.org/0000-0002-3596-7380</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-07, Vol.10 (28), p.23792-23801
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_8b05343
source ACS Publications
title Heterogeneously Catalyzed Aerobic Oxidation of Sulfides with a BaRuO 3 Nanoperovskite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneously%20Catalyzed%20Aerobic%20Oxidation%20of%20Sulfides%20with%20a%20BaRuO%203%20Nanoperovskite&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kamata,%20Keigo&rft.date=2018-07-18&rft.volume=10&rft.issue=28&rft.spage=23792&rft.epage=23801&rft.pages=23792-23801&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b05343&rft_dat=%3Cpubmed_cross%3E29983051%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29983051&rfr_iscdi=true