Grain-by-Grain Compositional Variations and Interstitial MetalsA New Route toward Achieving High Performance in Half-Heusler Thermoelectrics
Half-Heusler alloys based on TiNiSn are promising thermoelectric materials characterized by large power factors and good mechanical and thermal stabilities, but they are limited by large thermal conductivities. A variety of strategies have been used to disrupt their thermal transport, including allo...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-02, Vol.10 (5), p.4786-4793 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4793 |
---|---|
container_issue | 5 |
container_start_page | 4786 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Barczak, Sonia A Halpin, John E Buckman, Jim Decourt, Rodolphe Pollet, Michael Smith, Ronald I MacLaren, Donald A Bos, Jan-Willem G |
description | Half-Heusler alloys based on TiNiSn are promising thermoelectric materials characterized by large power factors and good mechanical and thermal stabilities, but they are limited by large thermal conductivities. A variety of strategies have been used to disrupt their thermal transport, including alloying with heavy, generally expensive, elements and nanostructuring, enabling figures of merit, ZT ≥ 1 at elevated temperatures (>773 K). Here, we demonstrate an alternative strategy that is based around the partial segregation of excess Cu leading to grain-by-grain compositional variations, the formation of extruded Cu “wetting layers” between grains, andmost importantlythe presence of statistically distributed interstitials that reduce the thermal conductivity effectively through point-defect scattering. Our best TiNiCu y Sn (y ≤ 0.1) compositions have a temperature-averaged ZT device = 0.3–0.4 and estimated leg power outputs of 6–7 W cm–2 in the 323–773 K temperature range. This is a significant development as these materials were prepared using a straightforward processing method, do not contain any toxic, expensive, or scarce elements, and are therefore promising candidates for large-scale production. |
doi_str_mv | 10.1021/acsami.7b14525 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_7b14525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a783078015</sourcerecordid><originalsourceid>FETCH-LOGICAL-a436t-dba7509fa222f79615bd62d715dc9f7b5b92af5e338c76b2ff95447809fa01eb3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EolBYGZFnpJTYsZNmrCpoKpWLUGGN7OS4dZXElZ1Q9SkYeRWeimcgJaUb0_ml_3KkD6Er4g-IT8mtyJwo9SCShHHKj9AZiRnzhpTT44NmrIfOnVv5fhhQn5-iHo0DEgSMnKGPiRW68uTW-xV4bMq1cbrWphIFfhNWi512WFQ5nlY1WFe3bus9QC0K9_35NcKPsMEvpqkB12YjbI5H2VLDu64WONGLJX4Gq4wtRZUBbn8kolBeAo0rwOL5EmxpoICstjpzF-hEtbNwub999Hp_Nx8n3uxpMh2PZp5gQVh7uRQR92MlKKUqikPCZR7SPCI8z2IVSS5jKhSHIBhmUSipUjFnLBruKj4BGfTRoNvNrHHOgkrXVpfCblPipzuyaUc23ZNtC9ddYd3IEvJD_A9lG7jpAm0xXZnGtgDdf2s_9gWHow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Grain-by-Grain Compositional Variations and Interstitial MetalsA New Route toward Achieving High Performance in Half-Heusler Thermoelectrics</title><source>American Chemical Society Journals</source><creator>Barczak, Sonia A ; Halpin, John E ; Buckman, Jim ; Decourt, Rodolphe ; Pollet, Michael ; Smith, Ronald I ; MacLaren, Donald A ; Bos, Jan-Willem G</creator><creatorcontrib>Barczak, Sonia A ; Halpin, John E ; Buckman, Jim ; Decourt, Rodolphe ; Pollet, Michael ; Smith, Ronald I ; MacLaren, Donald A ; Bos, Jan-Willem G</creatorcontrib><description>Half-Heusler alloys based on TiNiSn are promising thermoelectric materials characterized by large power factors and good mechanical and thermal stabilities, but they are limited by large thermal conductivities. A variety of strategies have been used to disrupt their thermal transport, including alloying with heavy, generally expensive, elements and nanostructuring, enabling figures of merit, ZT ≥ 1 at elevated temperatures (>773 K). Here, we demonstrate an alternative strategy that is based around the partial segregation of excess Cu leading to grain-by-grain compositional variations, the formation of extruded Cu “wetting layers” between grains, andmost importantlythe presence of statistically distributed interstitials that reduce the thermal conductivity effectively through point-defect scattering. Our best TiNiCu y Sn (y ≤ 0.1) compositions have a temperature-averaged ZT device = 0.3–0.4 and estimated leg power outputs of 6–7 W cm–2 in the 323–773 K temperature range. This is a significant development as these materials were prepared using a straightforward processing method, do not contain any toxic, expensive, or scarce elements, and are therefore promising candidates for large-scale production.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b14525</identifier><identifier>PMID: 29313341</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2018-02, Vol.10 (5), p.4786-4793</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a436t-dba7509fa222f79615bd62d715dc9f7b5b92af5e338c76b2ff95447809fa01eb3</citedby><cites>FETCH-LOGICAL-a436t-dba7509fa222f79615bd62d715dc9f7b5b92af5e338c76b2ff95447809fa01eb3</cites><orcidid>0000-0003-3947-2024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b14525$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b14525$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29313341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barczak, Sonia A</creatorcontrib><creatorcontrib>Halpin, John E</creatorcontrib><creatorcontrib>Buckman, Jim</creatorcontrib><creatorcontrib>Decourt, Rodolphe</creatorcontrib><creatorcontrib>Pollet, Michael</creatorcontrib><creatorcontrib>Smith, Ronald I</creatorcontrib><creatorcontrib>MacLaren, Donald A</creatorcontrib><creatorcontrib>Bos, Jan-Willem G</creatorcontrib><title>Grain-by-Grain Compositional Variations and Interstitial MetalsA New Route toward Achieving High Performance in Half-Heusler Thermoelectrics</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Half-Heusler alloys based on TiNiSn are promising thermoelectric materials characterized by large power factors and good mechanical and thermal stabilities, but they are limited by large thermal conductivities. A variety of strategies have been used to disrupt their thermal transport, including alloying with heavy, generally expensive, elements and nanostructuring, enabling figures of merit, ZT ≥ 1 at elevated temperatures (>773 K). Here, we demonstrate an alternative strategy that is based around the partial segregation of excess Cu leading to grain-by-grain compositional variations, the formation of extruded Cu “wetting layers” between grains, andmost importantlythe presence of statistically distributed interstitials that reduce the thermal conductivity effectively through point-defect scattering. Our best TiNiCu y Sn (y ≤ 0.1) compositions have a temperature-averaged ZT device = 0.3–0.4 and estimated leg power outputs of 6–7 W cm–2 in the 323–773 K temperature range. This is a significant development as these materials were prepared using a straightforward processing method, do not contain any toxic, expensive, or scarce elements, and are therefore promising candidates for large-scale production.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EolBYGZFnpJTYsZNmrCpoKpWLUGGN7OS4dZXElZ1Q9SkYeRWeimcgJaUb0_ml_3KkD6Er4g-IT8mtyJwo9SCShHHKj9AZiRnzhpTT44NmrIfOnVv5fhhQn5-iHo0DEgSMnKGPiRW68uTW-xV4bMq1cbrWphIFfhNWi512WFQ5nlY1WFe3bus9QC0K9_35NcKPsMEvpqkB12YjbI5H2VLDu64WONGLJX4Gq4wtRZUBbn8kolBeAo0rwOL5EmxpoICstjpzF-hEtbNwub999Hp_Nx8n3uxpMh2PZp5gQVh7uRQR92MlKKUqikPCZR7SPCI8z2IVSS5jKhSHIBhmUSipUjFnLBruKj4BGfTRoNvNrHHOgkrXVpfCblPipzuyaUc23ZNtC9ddYd3IEvJD_A9lG7jpAm0xXZnGtgDdf2s_9gWHow</recordid><startdate>20180207</startdate><enddate>20180207</enddate><creator>Barczak, Sonia A</creator><creator>Halpin, John E</creator><creator>Buckman, Jim</creator><creator>Decourt, Rodolphe</creator><creator>Pollet, Michael</creator><creator>Smith, Ronald I</creator><creator>MacLaren, Donald A</creator><creator>Bos, Jan-Willem G</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3947-2024</orcidid></search><sort><creationdate>20180207</creationdate><title>Grain-by-Grain Compositional Variations and Interstitial MetalsA New Route toward Achieving High Performance in Half-Heusler Thermoelectrics</title><author>Barczak, Sonia A ; Halpin, John E ; Buckman, Jim ; Decourt, Rodolphe ; Pollet, Michael ; Smith, Ronald I ; MacLaren, Donald A ; Bos, Jan-Willem G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a436t-dba7509fa222f79615bd62d715dc9f7b5b92af5e338c76b2ff95447809fa01eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barczak, Sonia A</creatorcontrib><creatorcontrib>Halpin, John E</creatorcontrib><creatorcontrib>Buckman, Jim</creatorcontrib><creatorcontrib>Decourt, Rodolphe</creatorcontrib><creatorcontrib>Pollet, Michael</creatorcontrib><creatorcontrib>Smith, Ronald I</creatorcontrib><creatorcontrib>MacLaren, Donald A</creatorcontrib><creatorcontrib>Bos, Jan-Willem G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barczak, Sonia A</au><au>Halpin, John E</au><au>Buckman, Jim</au><au>Decourt, Rodolphe</au><au>Pollet, Michael</au><au>Smith, Ronald I</au><au>MacLaren, Donald A</au><au>Bos, Jan-Willem G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain-by-Grain Compositional Variations and Interstitial MetalsA New Route toward Achieving High Performance in Half-Heusler Thermoelectrics</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-02-07</date><risdate>2018</risdate><volume>10</volume><issue>5</issue><spage>4786</spage><epage>4793</epage><pages>4786-4793</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Half-Heusler alloys based on TiNiSn are promising thermoelectric materials characterized by large power factors and good mechanical and thermal stabilities, but they are limited by large thermal conductivities. A variety of strategies have been used to disrupt their thermal transport, including alloying with heavy, generally expensive, elements and nanostructuring, enabling figures of merit, ZT ≥ 1 at elevated temperatures (>773 K). Here, we demonstrate an alternative strategy that is based around the partial segregation of excess Cu leading to grain-by-grain compositional variations, the formation of extruded Cu “wetting layers” between grains, andmost importantlythe presence of statistically distributed interstitials that reduce the thermal conductivity effectively through point-defect scattering. Our best TiNiCu y Sn (y ≤ 0.1) compositions have a temperature-averaged ZT device = 0.3–0.4 and estimated leg power outputs of 6–7 W cm–2 in the 323–773 K temperature range. This is a significant development as these materials were prepared using a straightforward processing method, do not contain any toxic, expensive, or scarce elements, and are therefore promising candidates for large-scale production.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29313341</pmid><doi>10.1021/acsami.7b14525</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3947-2024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-02, Vol.10 (5), p.4786-4793 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_7b14525 |
source | American Chemical Society Journals |
title | Grain-by-Grain Compositional Variations and Interstitial MetalsA New Route toward Achieving High Performance in Half-Heusler Thermoelectrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain-by-Grain%20Compositional%20Variations%20and%20Interstitial%20Metals%EE%97%B8A%20New%20Route%20toward%20Achieving%20High%20Performance%20in%20Half-Heusler%20Thermoelectrics&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Barczak,%20Sonia%20A&rft.date=2018-02-07&rft.volume=10&rft.issue=5&rft.spage=4786&rft.epage=4793&rft.pages=4786-4793&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b14525&rft_dat=%3Cacs_cross%3Ea783078015%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29313341&rfr_iscdi=true |