Stability and Performance of CsPbI 2 Br Thin Films and Solar Cell Devices

In this manuscript, the inorganic perovskite CsPbI Br is investigated as a photovoltaic material that offers higher stability than the organic-inorganic hybrid perovskite materials. It is demonstrated that CsPbI Br does not irreversibly degrade to its component salts as in the case of methylammonium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-01, Vol.10 (4), p.3750-3760
Hauptverfasser: Mariotti, Silvia, Hutter, Oliver S, Phillips, Laurie J, Yates, Peter J, Kundu, Biswajit, Durose, Ken
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3760
container_issue 4
container_start_page 3750
container_title ACS applied materials & interfaces
container_volume 10
creator Mariotti, Silvia
Hutter, Oliver S
Phillips, Laurie J
Yates, Peter J
Kundu, Biswajit
Durose, Ken
description In this manuscript, the inorganic perovskite CsPbI Br is investigated as a photovoltaic material that offers higher stability than the organic-inorganic hybrid perovskite materials. It is demonstrated that CsPbI Br does not irreversibly degrade to its component salts as in the case of methylammonium lead iodide but instead is induced (by water vapor) to transform from its metastable brown cubic (1.92 eV band gap) phase to a yellow phase having a higher band gap (2.85 eV). This is easily reversed by heating to 350 °C in a dry environment. Similarly, exposure of unencapsulated photovoltaic devices to water vapor causes current (J ) loss as the absorber transforms to its more transparent (yellow) form, but this is also reversible by moderate heating, with over 100% recovery of the original device performance. NMR and thermal analysis show that the high band gap yellow phase does not contain detectable levels of water, implying that water induces the transformation but is not incorporated as a major component. Performances of devices with best efficiencies of 9.08% (V = 1.05 V, J = 12.7 mA cm and FF = 68.4%) using a device structure comprising glass/ITO/c-TiO /CsPbI Br/Spiro-OMeTAD/Au are presented, and further results demonstrating the dependence of the performance on the preparation temperature of the solution processed CsPbI Br films are shown. We conclude that encapsulation of CsPbI Br to exclude water vapor should be sufficient to stabilize the cubic brown phase, making the material of interest for use in practical PV devices.
doi_str_mv 10.1021/acsami.7b14039
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_7b14039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29345454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1074-265e09f4ffe5e2e6cccb70fcd01a2a4dc3b595c36c8c3686e4cc8844ef74b06d3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRbK1uXcr8gcR55rHUaDVQsNC6DjM3d3AkacpMFfrvjbaWC-eexTln8RFyy1nKmeD3BqLpfZpbrpgsz8iUl0olhdDi_OSVmpCrGD8Zy6Rg-pJMRCmVHm9K6tXOWN_53Z6aTUuXGNwQerMBpIOjVVzamgr6GOj6w2_o3Hd9_Auuhs4EWmHX0Sf89oDxmlw400W8Of4ZeZ8_r6vXZPH2UlcPiwQ4y1UiMo2sdMo51CgwAwCbMwct40YY1YK0utQgMyhGKTJUAEWhFLpcWZa1ckbSwy6EIcaArtkG35uwbzhrfpk0BybNkclYuDsUtl-2x_YU_4cgfwC5jV1L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability and Performance of CsPbI 2 Br Thin Films and Solar Cell Devices</title><source>American Chemical Society Journals</source><creator>Mariotti, Silvia ; Hutter, Oliver S ; Phillips, Laurie J ; Yates, Peter J ; Kundu, Biswajit ; Durose, Ken</creator><creatorcontrib>Mariotti, Silvia ; Hutter, Oliver S ; Phillips, Laurie J ; Yates, Peter J ; Kundu, Biswajit ; Durose, Ken</creatorcontrib><description>In this manuscript, the inorganic perovskite CsPbI Br is investigated as a photovoltaic material that offers higher stability than the organic-inorganic hybrid perovskite materials. It is demonstrated that CsPbI Br does not irreversibly degrade to its component salts as in the case of methylammonium lead iodide but instead is induced (by water vapor) to transform from its metastable brown cubic (1.92 eV band gap) phase to a yellow phase having a higher band gap (2.85 eV). This is easily reversed by heating to 350 °C in a dry environment. Similarly, exposure of unencapsulated photovoltaic devices to water vapor causes current (J ) loss as the absorber transforms to its more transparent (yellow) form, but this is also reversible by moderate heating, with over 100% recovery of the original device performance. NMR and thermal analysis show that the high band gap yellow phase does not contain detectable levels of water, implying that water induces the transformation but is not incorporated as a major component. Performances of devices with best efficiencies of 9.08% (V = 1.05 V, J = 12.7 mA cm and FF = 68.4%) using a device structure comprising glass/ITO/c-TiO /CsPbI Br/Spiro-OMeTAD/Au are presented, and further results demonstrating the dependence of the performance on the preparation temperature of the solution processed CsPbI Br films are shown. We conclude that encapsulation of CsPbI Br to exclude water vapor should be sufficient to stabilize the cubic brown phase, making the material of interest for use in practical PV devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b14039</identifier><identifier>PMID: 29345454</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-01, Vol.10 (4), p.3750-3760</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1074-265e09f4ffe5e2e6cccb70fcd01a2a4dc3b595c36c8c3686e4cc8844ef74b06d3</citedby><cites>FETCH-LOGICAL-c1074-265e09f4ffe5e2e6cccb70fcd01a2a4dc3b595c36c8c3686e4cc8844ef74b06d3</cites><orcidid>0000-0002-7163-9480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29345454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mariotti, Silvia</creatorcontrib><creatorcontrib>Hutter, Oliver S</creatorcontrib><creatorcontrib>Phillips, Laurie J</creatorcontrib><creatorcontrib>Yates, Peter J</creatorcontrib><creatorcontrib>Kundu, Biswajit</creatorcontrib><creatorcontrib>Durose, Ken</creatorcontrib><title>Stability and Performance of CsPbI 2 Br Thin Films and Solar Cell Devices</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>In this manuscript, the inorganic perovskite CsPbI Br is investigated as a photovoltaic material that offers higher stability than the organic-inorganic hybrid perovskite materials. It is demonstrated that CsPbI Br does not irreversibly degrade to its component salts as in the case of methylammonium lead iodide but instead is induced (by water vapor) to transform from its metastable brown cubic (1.92 eV band gap) phase to a yellow phase having a higher band gap (2.85 eV). This is easily reversed by heating to 350 °C in a dry environment. Similarly, exposure of unencapsulated photovoltaic devices to water vapor causes current (J ) loss as the absorber transforms to its more transparent (yellow) form, but this is also reversible by moderate heating, with over 100% recovery of the original device performance. NMR and thermal analysis show that the high band gap yellow phase does not contain detectable levels of water, implying that water induces the transformation but is not incorporated as a major component. Performances of devices with best efficiencies of 9.08% (V = 1.05 V, J = 12.7 mA cm and FF = 68.4%) using a device structure comprising glass/ITO/c-TiO /CsPbI Br/Spiro-OMeTAD/Au are presented, and further results demonstrating the dependence of the performance on the preparation temperature of the solution processed CsPbI Br films are shown. We conclude that encapsulation of CsPbI Br to exclude water vapor should be sufficient to stabilize the cubic brown phase, making the material of interest for use in practical PV devices.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRbK1uXcr8gcR55rHUaDVQsNC6DjM3d3AkacpMFfrvjbaWC-eexTln8RFyy1nKmeD3BqLpfZpbrpgsz8iUl0olhdDi_OSVmpCrGD8Zy6Rg-pJMRCmVHm9K6tXOWN_53Z6aTUuXGNwQerMBpIOjVVzamgr6GOj6w2_o3Hd9_Auuhs4EWmHX0Sf89oDxmlw400W8Of4ZeZ8_r6vXZPH2UlcPiwQ4y1UiMo2sdMo51CgwAwCbMwct40YY1YK0utQgMyhGKTJUAEWhFLpcWZa1ckbSwy6EIcaArtkG35uwbzhrfpk0BybNkclYuDsUtl-2x_YU_4cgfwC5jV1L</recordid><startdate>20180131</startdate><enddate>20180131</enddate><creator>Mariotti, Silvia</creator><creator>Hutter, Oliver S</creator><creator>Phillips, Laurie J</creator><creator>Yates, Peter J</creator><creator>Kundu, Biswajit</creator><creator>Durose, Ken</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7163-9480</orcidid></search><sort><creationdate>20180131</creationdate><title>Stability and Performance of CsPbI 2 Br Thin Films and Solar Cell Devices</title><author>Mariotti, Silvia ; Hutter, Oliver S ; Phillips, Laurie J ; Yates, Peter J ; Kundu, Biswajit ; Durose, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1074-265e09f4ffe5e2e6cccb70fcd01a2a4dc3b595c36c8c3686e4cc8844ef74b06d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mariotti, Silvia</creatorcontrib><creatorcontrib>Hutter, Oliver S</creatorcontrib><creatorcontrib>Phillips, Laurie J</creatorcontrib><creatorcontrib>Yates, Peter J</creatorcontrib><creatorcontrib>Kundu, Biswajit</creatorcontrib><creatorcontrib>Durose, Ken</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mariotti, Silvia</au><au>Hutter, Oliver S</au><au>Phillips, Laurie J</au><au>Yates, Peter J</au><au>Kundu, Biswajit</au><au>Durose, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and Performance of CsPbI 2 Br Thin Films and Solar Cell Devices</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2018-01-31</date><risdate>2018</risdate><volume>10</volume><issue>4</issue><spage>3750</spage><epage>3760</epage><pages>3750-3760</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this manuscript, the inorganic perovskite CsPbI Br is investigated as a photovoltaic material that offers higher stability than the organic-inorganic hybrid perovskite materials. It is demonstrated that CsPbI Br does not irreversibly degrade to its component salts as in the case of methylammonium lead iodide but instead is induced (by water vapor) to transform from its metastable brown cubic (1.92 eV band gap) phase to a yellow phase having a higher band gap (2.85 eV). This is easily reversed by heating to 350 °C in a dry environment. Similarly, exposure of unencapsulated photovoltaic devices to water vapor causes current (J ) loss as the absorber transforms to its more transparent (yellow) form, but this is also reversible by moderate heating, with over 100% recovery of the original device performance. NMR and thermal analysis show that the high band gap yellow phase does not contain detectable levels of water, implying that water induces the transformation but is not incorporated as a major component. Performances of devices with best efficiencies of 9.08% (V = 1.05 V, J = 12.7 mA cm and FF = 68.4%) using a device structure comprising glass/ITO/c-TiO /CsPbI Br/Spiro-OMeTAD/Au are presented, and further results demonstrating the dependence of the performance on the preparation temperature of the solution processed CsPbI Br films are shown. We conclude that encapsulation of CsPbI Br to exclude water vapor should be sufficient to stabilize the cubic brown phase, making the material of interest for use in practical PV devices.</abstract><cop>United States</cop><pmid>29345454</pmid><doi>10.1021/acsami.7b14039</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7163-9480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-01, Vol.10 (4), p.3750-3760
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_7b14039
source American Chemical Society Journals
title Stability and Performance of CsPbI 2 Br Thin Films and Solar Cell Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20Performance%20of%20CsPbI%202%20Br%20Thin%20Films%20and%20Solar%20Cell%20Devices&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Mariotti,%20Silvia&rft.date=2018-01-31&rft.volume=10&rft.issue=4&rft.spage=3750&rft.epage=3760&rft.pages=3750-3760&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b14039&rft_dat=%3Cpubmed_cross%3E29345454%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29345454&rfr_iscdi=true