High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation

The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-01, Vol.10 (4), p.3739-3749
Hauptverfasser: Jung, Su Min, Kang, Han Lim, Won, Jong Kook, Kim, JaeHyun, Hwang, ChaHwan, Ahn, KyungHan, Chung, In, Ju, Byeong-Kwon, Kim, Myung-Gil, Park, Sung Kyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3749
container_issue 4
container_start_page 3739
container_title ACS applied materials & interfaces
container_volume 10
creator Jung, Su Min
Kang, Han Lim
Won, Jong Kook
Kim, JaeHyun
Hwang, ChaHwan
Ahn, KyungHan
Chung, In
Ju, Byeong-Kwon
Kim, Myung-Gil
Park, Sung Kyu
description The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn2S6 4–, Sn2Se6 4–, and In2Se4 2–, to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn2S6 4–, Sn2Se6 4–, and In2Se4 2– ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm2/(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.
doi_str_mv 10.1021/acsami.7b13997
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_7b13997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c708194073</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-473b01dcfa2dded1f059088a73ca73ea7238b58b09c73f56dc614a872029ba783</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EoqVw5Yh8RkrxI6mTI_RBkZAoUM7RxnFaV4lT2U5R-QH8blJaeuOw2pF2ZqT9ELqmpE8Jo3cgHVS6LzLKk0ScoC5NwjCIWcROjzoMO-jCuRUhA85IdI46LOGMCUG66HuqF8tgpmxR2wqMVPi1AeObCo9qj-dLbYKJLis8t2Ccdr62Dn9qv8Rjs9G2NpUyHspyix-U0QuD3xtbQNsyaYz0ujZQ6i_YCQwmx2911jiPR6pQ0uMZOKc3v9dLdFZA6dTVYffQx2Q8H06D55fHp-H9cwCcEx-EgmeE5rIAlucqpwWJEhLHILhsR4FgPM6iOCOJFLyIBrkc0BBiwQhLMhAx76H-vlfa2jmrinRtdQV2m1KS7oCme6DpAWgbuNkH1k1Wqfxo_yPYGm73hjaYrurGti-7_9p-AAO-g8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation</title><source>ACS Publications</source><creator>Jung, Su Min ; Kang, Han Lim ; Won, Jong Kook ; Kim, JaeHyun ; Hwang, ChaHwan ; Ahn, KyungHan ; Chung, In ; Ju, Byeong-Kwon ; Kim, Myung-Gil ; Park, Sung Kyu</creator><creatorcontrib>Jung, Su Min ; Kang, Han Lim ; Won, Jong Kook ; Kim, JaeHyun ; Hwang, ChaHwan ; Ahn, KyungHan ; Chung, In ; Ju, Byeong-Kwon ; Kim, Myung-Gil ; Park, Sung Kyu</creatorcontrib><description>The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn2S6 4–, Sn2Se6 4–, and In2Se4 2–, to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn2S6 4–, Sn2Se6 4–, and In2Se4 2– ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm2/(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b13997</identifier><identifier>PMID: 29322770</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-01, Vol.10 (4), p.3739-3749</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-473b01dcfa2dded1f059088a73ca73ea7238b58b09c73f56dc614a872029ba783</citedby><cites>FETCH-LOGICAL-a330t-473b01dcfa2dded1f059088a73ca73ea7238b58b09c73f56dc614a872029ba783</cites><orcidid>0000-0001-9617-2541 ; 0000-0001-6274-3369 ; 0000-0002-7806-8043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b13997$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b13997$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29322770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Su Min</creatorcontrib><creatorcontrib>Kang, Han Lim</creatorcontrib><creatorcontrib>Won, Jong Kook</creatorcontrib><creatorcontrib>Kim, JaeHyun</creatorcontrib><creatorcontrib>Hwang, ChaHwan</creatorcontrib><creatorcontrib>Ahn, KyungHan</creatorcontrib><creatorcontrib>Chung, In</creatorcontrib><creatorcontrib>Ju, Byeong-Kwon</creatorcontrib><creatorcontrib>Kim, Myung-Gil</creatorcontrib><creatorcontrib>Park, Sung Kyu</creatorcontrib><title>High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn2S6 4–, Sn2Se6 4–, and In2Se4 2–, to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn2S6 4–, Sn2Se6 4–, and In2Se4 2– ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm2/(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EoqVw5Yh8RkrxI6mTI_RBkZAoUM7RxnFaV4lT2U5R-QH8blJaeuOw2pF2ZqT9ELqmpE8Jo3cgHVS6LzLKk0ScoC5NwjCIWcROjzoMO-jCuRUhA85IdI46LOGMCUG66HuqF8tgpmxR2wqMVPi1AeObCo9qj-dLbYKJLis8t2Ccdr62Dn9qv8Rjs9G2NpUyHspyix-U0QuD3xtbQNsyaYz0ujZQ6i_YCQwmx2911jiPR6pQ0uMZOKc3v9dLdFZA6dTVYffQx2Q8H06D55fHp-H9cwCcEx-EgmeE5rIAlucqpwWJEhLHILhsR4FgPM6iOCOJFLyIBrkc0BBiwQhLMhAx76H-vlfa2jmrinRtdQV2m1KS7oCme6DpAWgbuNkH1k1Wqfxo_yPYGm73hjaYrurGti-7_9p-AAO-g8k</recordid><startdate>20180131</startdate><enddate>20180131</enddate><creator>Jung, Su Min</creator><creator>Kang, Han Lim</creator><creator>Won, Jong Kook</creator><creator>Kim, JaeHyun</creator><creator>Hwang, ChaHwan</creator><creator>Ahn, KyungHan</creator><creator>Chung, In</creator><creator>Ju, Byeong-Kwon</creator><creator>Kim, Myung-Gil</creator><creator>Park, Sung Kyu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9617-2541</orcidid><orcidid>https://orcid.org/0000-0001-6274-3369</orcidid><orcidid>https://orcid.org/0000-0002-7806-8043</orcidid></search><sort><creationdate>20180131</creationdate><title>High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation</title><author>Jung, Su Min ; Kang, Han Lim ; Won, Jong Kook ; Kim, JaeHyun ; Hwang, ChaHwan ; Ahn, KyungHan ; Chung, In ; Ju, Byeong-Kwon ; Kim, Myung-Gil ; Park, Sung Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-473b01dcfa2dded1f059088a73ca73ea7238b58b09c73f56dc614a872029ba783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Su Min</creatorcontrib><creatorcontrib>Kang, Han Lim</creatorcontrib><creatorcontrib>Won, Jong Kook</creatorcontrib><creatorcontrib>Kim, JaeHyun</creatorcontrib><creatorcontrib>Hwang, ChaHwan</creatorcontrib><creatorcontrib>Ahn, KyungHan</creatorcontrib><creatorcontrib>Chung, In</creatorcontrib><creatorcontrib>Ju, Byeong-Kwon</creatorcontrib><creatorcontrib>Kim, Myung-Gil</creatorcontrib><creatorcontrib>Park, Sung Kyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Su Min</au><au>Kang, Han Lim</au><au>Won, Jong Kook</au><au>Kim, JaeHyun</au><au>Hwang, ChaHwan</au><au>Ahn, KyungHan</au><au>Chung, In</au><au>Ju, Byeong-Kwon</au><au>Kim, Myung-Gil</au><au>Park, Sung Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-01-31</date><risdate>2018</risdate><volume>10</volume><issue>4</issue><spage>3739</spage><epage>3749</epage><pages>3739-3749</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn2S6 4–, Sn2Se6 4–, and In2Se4 2–, to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn2S6 4–, Sn2Se6 4–, and In2Se4 2– ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm2/(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29322770</pmid><doi>10.1021/acsami.7b13997</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9617-2541</orcidid><orcidid>https://orcid.org/0000-0001-6274-3369</orcidid><orcidid>https://orcid.org/0000-0002-7806-8043</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-01, Vol.10 (4), p.3739-3749
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_7b13997
source ACS Publications
title High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Quantum%20Dot%20Thin-Film%20Transistors%20with%20Environmentally%20Benign%20Surface%20Functionalization%20and%20Robust%20Defect%20Passivation&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jung,%20Su%20Min&rft.date=2018-01-31&rft.volume=10&rft.issue=4&rft.spage=3739&rft.epage=3749&rft.pages=3739-3749&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b13997&rft_dat=%3Cacs_cross%3Ec708194073%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29322770&rfr_iscdi=true