Superior Pseudocapacitive Lithium-Ion Storage in Porous Vanadium Oxides@C Heterostructure Composite

Vanadium oxides are promising anode materials for lithium-ion batteries (LIBs) due to their high capacity, good safety, and low cost. However, their practical application has been deferred by the poor rate capability and cycling stability. In this work, we report the designed synthesis of porous V2O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-12, Vol.9 (50), p.43665-43673
Hauptverfasser: Wang, Hong-En, Zhao, Xu, Yin, Kaili, Li, Yu, Chen, Lihua, Yang, Xiaoyu, Zhang, Wenjun, Su, Bao-Lian, Cao, Guozhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43673
container_issue 50
container_start_page 43665
container_title ACS applied materials & interfaces
container_volume 9
creator Wang, Hong-En
Zhao, Xu
Yin, Kaili
Li, Yu
Chen, Lihua
Yang, Xiaoyu
Zhang, Wenjun
Su, Bao-Lian
Cao, Guozhong
description Vanadium oxides are promising anode materials for lithium-ion batteries (LIBs) due to their high capacity, good safety, and low cost. However, their practical application has been deferred by the poor rate capability and cycling stability. In this work, we report the designed synthesis of porous V2O3/VO2@carbon heterostructure electrode for high-performance LIBs. The synergic effects of porous nanostructures, phase hybridization with self-building electric field at heterointerface, and conductive carbon implantation effectively enhance the electronic/ionic conduction and buffer the volume variation in the composite material. Electrochemical tests reveal that the composite electrode exhibits high Li-ion storage capacities of 503 and 453 mAh/g at 100 and 500 mA/g, as well as good cycling stability with a retained capacity of 569 mAh/g over 105 cycles at 100 mA/g. In-depth kinetics analysis discloses that pseudocapacitive Li-ion storage process dominates in the composite electrode, which is probably enabled by efficient coupling of the heterostructure components. The strategy of in situ carbon implantation and phase hybridization presented herein may be extended to other electrode materials for rechargeable batteries with superior electrochemical properties.
doi_str_mv 10.1021/acsami.7b13658
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_7b13658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i52962851</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-f186d6c78071c3ae07372e50ca07d09c5d6a56f8d3335df773e76ea175d416483</originalsourceid><addsrcrecordid>eNp1kM9LwzAcxYMoTqdXj5Kz0Jk0TdPelKJuMNhg6rVkybeaYZuSH6L_vZXO3Tx9H3zfezw-CF1RMqMkpbdSedmamdhSlvPiCJ3RMsuSIuXp8UFn2QSde78jJGcp4adokpa0TAXPzpDaxB6csQ6vPURtleylMsF8Al6a8G5imyxshzfBOvkG2HR4bZ2NHr_KTurhjVdfRoO_q_AcAjjrg4sqRAe4sm1vvQlwgU4a-eHhcn-n6OXx4bmaJ8vV06K6XyaSMRKShha5zpUoiKCKSSCCiRQ4UZIITUrFdS553hSaMcZ1IwQDkYOkguuM5lnBpmg29qphhnfQ1L0zrXTfNSX1L616pFXvaQ2B6zHQx20L-mD_wzMYbkbDEKx3Nrpu2P9f2w_ubXYz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superior Pseudocapacitive Lithium-Ion Storage in Porous Vanadium Oxides@C Heterostructure Composite</title><source>ACS Publications</source><creator>Wang, Hong-En ; Zhao, Xu ; Yin, Kaili ; Li, Yu ; Chen, Lihua ; Yang, Xiaoyu ; Zhang, Wenjun ; Su, Bao-Lian ; Cao, Guozhong</creator><creatorcontrib>Wang, Hong-En ; Zhao, Xu ; Yin, Kaili ; Li, Yu ; Chen, Lihua ; Yang, Xiaoyu ; Zhang, Wenjun ; Su, Bao-Lian ; Cao, Guozhong</creatorcontrib><description>Vanadium oxides are promising anode materials for lithium-ion batteries (LIBs) due to their high capacity, good safety, and low cost. However, their practical application has been deferred by the poor rate capability and cycling stability. In this work, we report the designed synthesis of porous V2O3/VO2@carbon heterostructure electrode for high-performance LIBs. The synergic effects of porous nanostructures, phase hybridization with self-building electric field at heterointerface, and conductive carbon implantation effectively enhance the electronic/ionic conduction and buffer the volume variation in the composite material. Electrochemical tests reveal that the composite electrode exhibits high Li-ion storage capacities of 503 and 453 mAh/g at 100 and 500 mA/g, as well as good cycling stability with a retained capacity of 569 mAh/g over 105 cycles at 100 mA/g. In-depth kinetics analysis discloses that pseudocapacitive Li-ion storage process dominates in the composite electrode, which is probably enabled by efficient coupling of the heterostructure components. The strategy of in situ carbon implantation and phase hybridization presented herein may be extended to other electrode materials for rechargeable batteries with superior electrochemical properties.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b13658</identifier><identifier>PMID: 29192754</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-12, Vol.9 (50), p.43665-43673</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-f186d6c78071c3ae07372e50ca07d09c5d6a56f8d3335df773e76ea175d416483</citedby><cites>FETCH-LOGICAL-a330t-f186d6c78071c3ae07372e50ca07d09c5d6a56f8d3335df773e76ea175d416483</cites><orcidid>0000-0002-4497-0688 ; 0000-0002-6859-5683 ; 0000-0003-1498-4517 ; 0000-0002-1282-5312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b13658$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b13658$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29192754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hong-En</creatorcontrib><creatorcontrib>Zhao, Xu</creatorcontrib><creatorcontrib>Yin, Kaili</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Chen, Lihua</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><creatorcontrib>Su, Bao-Lian</creatorcontrib><creatorcontrib>Cao, Guozhong</creatorcontrib><title>Superior Pseudocapacitive Lithium-Ion Storage in Porous Vanadium Oxides@C Heterostructure Composite</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Vanadium oxides are promising anode materials for lithium-ion batteries (LIBs) due to their high capacity, good safety, and low cost. However, their practical application has been deferred by the poor rate capability and cycling stability. In this work, we report the designed synthesis of porous V2O3/VO2@carbon heterostructure electrode for high-performance LIBs. The synergic effects of porous nanostructures, phase hybridization with self-building electric field at heterointerface, and conductive carbon implantation effectively enhance the electronic/ionic conduction and buffer the volume variation in the composite material. Electrochemical tests reveal that the composite electrode exhibits high Li-ion storage capacities of 503 and 453 mAh/g at 100 and 500 mA/g, as well as good cycling stability with a retained capacity of 569 mAh/g over 105 cycles at 100 mA/g. In-depth kinetics analysis discloses that pseudocapacitive Li-ion storage process dominates in the composite electrode, which is probably enabled by efficient coupling of the heterostructure components. The strategy of in situ carbon implantation and phase hybridization presented herein may be extended to other electrode materials for rechargeable batteries with superior electrochemical properties.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAcxYMoTqdXj5Kz0Jk0TdPelKJuMNhg6rVkybeaYZuSH6L_vZXO3Tx9H3zfezw-CF1RMqMkpbdSedmamdhSlvPiCJ3RMsuSIuXp8UFn2QSde78jJGcp4adokpa0TAXPzpDaxB6csQ6vPURtleylMsF8Al6a8G5imyxshzfBOvkG2HR4bZ2NHr_KTurhjVdfRoO_q_AcAjjrg4sqRAe4sm1vvQlwgU4a-eHhcn-n6OXx4bmaJ8vV06K6XyaSMRKShha5zpUoiKCKSSCCiRQ4UZIITUrFdS553hSaMcZ1IwQDkYOkguuM5lnBpmg29qphhnfQ1L0zrXTfNSX1L616pFXvaQ2B6zHQx20L-mD_wzMYbkbDEKx3Nrpu2P9f2w_ubXYz</recordid><startdate>20171220</startdate><enddate>20171220</enddate><creator>Wang, Hong-En</creator><creator>Zhao, Xu</creator><creator>Yin, Kaili</creator><creator>Li, Yu</creator><creator>Chen, Lihua</creator><creator>Yang, Xiaoyu</creator><creator>Zhang, Wenjun</creator><creator>Su, Bao-Lian</creator><creator>Cao, Guozhong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4497-0688</orcidid><orcidid>https://orcid.org/0000-0002-6859-5683</orcidid><orcidid>https://orcid.org/0000-0003-1498-4517</orcidid><orcidid>https://orcid.org/0000-0002-1282-5312</orcidid></search><sort><creationdate>20171220</creationdate><title>Superior Pseudocapacitive Lithium-Ion Storage in Porous Vanadium Oxides@C Heterostructure Composite</title><author>Wang, Hong-En ; Zhao, Xu ; Yin, Kaili ; Li, Yu ; Chen, Lihua ; Yang, Xiaoyu ; Zhang, Wenjun ; Su, Bao-Lian ; Cao, Guozhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-f186d6c78071c3ae07372e50ca07d09c5d6a56f8d3335df773e76ea175d416483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hong-En</creatorcontrib><creatorcontrib>Zhao, Xu</creatorcontrib><creatorcontrib>Yin, Kaili</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Chen, Lihua</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><creatorcontrib>Su, Bao-Lian</creatorcontrib><creatorcontrib>Cao, Guozhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hong-En</au><au>Zhao, Xu</au><au>Yin, Kaili</au><au>Li, Yu</au><au>Chen, Lihua</au><au>Yang, Xiaoyu</au><au>Zhang, Wenjun</au><au>Su, Bao-Lian</au><au>Cao, Guozhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior Pseudocapacitive Lithium-Ion Storage in Porous Vanadium Oxides@C Heterostructure Composite</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-12-20</date><risdate>2017</risdate><volume>9</volume><issue>50</issue><spage>43665</spage><epage>43673</epage><pages>43665-43673</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Vanadium oxides are promising anode materials for lithium-ion batteries (LIBs) due to their high capacity, good safety, and low cost. However, their practical application has been deferred by the poor rate capability and cycling stability. In this work, we report the designed synthesis of porous V2O3/VO2@carbon heterostructure electrode for high-performance LIBs. The synergic effects of porous nanostructures, phase hybridization with self-building electric field at heterointerface, and conductive carbon implantation effectively enhance the electronic/ionic conduction and buffer the volume variation in the composite material. Electrochemical tests reveal that the composite electrode exhibits high Li-ion storage capacities of 503 and 453 mAh/g at 100 and 500 mA/g, as well as good cycling stability with a retained capacity of 569 mAh/g over 105 cycles at 100 mA/g. In-depth kinetics analysis discloses that pseudocapacitive Li-ion storage process dominates in the composite electrode, which is probably enabled by efficient coupling of the heterostructure components. The strategy of in situ carbon implantation and phase hybridization presented herein may be extended to other electrode materials for rechargeable batteries with superior electrochemical properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29192754</pmid><doi>10.1021/acsami.7b13658</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4497-0688</orcidid><orcidid>https://orcid.org/0000-0002-6859-5683</orcidid><orcidid>https://orcid.org/0000-0003-1498-4517</orcidid><orcidid>https://orcid.org/0000-0002-1282-5312</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-12, Vol.9 (50), p.43665-43673
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_7b13658
source ACS Publications
title Superior Pseudocapacitive Lithium-Ion Storage in Porous Vanadium Oxides@C Heterostructure Composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T10%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20Pseudocapacitive%20Lithium-Ion%20Storage%20in%20Porous%20Vanadium%20Oxides@C%20Heterostructure%20Composite&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Hong-En&rft.date=2017-12-20&rft.volume=9&rft.issue=50&rft.spage=43665&rft.epage=43673&rft.pages=43665-43673&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b13658&rft_dat=%3Cacs_cross%3Ei52962851%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29192754&rfr_iscdi=true