Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding

A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-05, Vol.9 (17), p.14665-14676
Hauptverfasser: Qiao, Xin, Qian, Zhigang, Li, Junjie, Sun, Hongji, Han, Yao, Xia, Xiaoxia, Zhou, Jin, Wang, Chunlan, Wang, Yan, Wang, Changyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14676
container_issue 17
container_start_page 14665
container_title ACS applied materials & interfaces
container_volume 9
creator Qiao, Xin
Qian, Zhigang
Li, Junjie
Sun, Hongji
Han, Yao
Xia, Xiaoxia
Zhou, Jin
Wang, Chunlan
Wang, Yan
Wang, Changyong
description A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.
doi_str_mv 10.1021/acsami.7b01752
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_7b01752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a393257711</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-c78f11c4e122fb2dbb987bc537640c44ca7f1a15643c521ce9a081914ba028063</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMotlavHiVnYWsmm_06SmlrYaGHKh6XJE22qftFsrX0vzeytTdP82Dee8z8EHoEMgVC4YVLx2szTQSBJKJXaAwZY0FKI3p90YyN0J1ze0LikJLoFo1oGqaMkXiMys2p6XeqNxLPm9I0SlnTlLjVeNOZrbJ4Y6ovvDDCS-7wqu4q3vRcVAqvO5_iFf7k36o8eLPDurU4b49B3jqHc1Puerz0G994j240r5x6OM8J-ljM32dvQb5ermavecDDLO4DmaQaQDIFlGpBt0JkaSJkFCYxI5IxyRMNHKKYhTKiIFXGSQoZMMEJTf1_EzQdeqX1N1ili86amttTAaT4JVYMxIozMR94GgLdQdRqe7H_IfKG58Hgg8W-PdjG3_9f2w-cMnY3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding</title><source>MEDLINE</source><source>ACS Publications</source><creator>Qiao, Xin ; Qian, Zhigang ; Li, Junjie ; Sun, Hongji ; Han, Yao ; Xia, Xiaoxia ; Zhou, Jin ; Wang, Chunlan ; Wang, Yan ; Wang, Changyong</creator><creatorcontrib>Qiao, Xin ; Qian, Zhigang ; Li, Junjie ; Sun, Hongji ; Han, Yao ; Xia, Xiaoxia ; Zhou, Jin ; Wang, Chunlan ; Wang, Yan ; Wang, Changyong</creatorcontrib><description>A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b01752</identifier><identifier>PMID: 28384406</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Bombyx ; Mice ; Prostheses and Implants ; Recombinant Proteins ; Silk ; Spiders</subject><ispartof>ACS applied materials &amp; interfaces, 2017-05, Vol.9 (17), p.14665-14676</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-c78f11c4e122fb2dbb987bc537640c44ca7f1a15643c521ce9a081914ba028063</citedby><cites>FETCH-LOGICAL-a396t-c78f11c4e122fb2dbb987bc537640c44ca7f1a15643c521ce9a081914ba028063</cites><orcidid>0000-0003-1526-3308 ; 0000-0001-8375-1616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b01752$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b01752$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28384406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiao, Xin</creatorcontrib><creatorcontrib>Qian, Zhigang</creatorcontrib><creatorcontrib>Li, Junjie</creatorcontrib><creatorcontrib>Sun, Hongji</creatorcontrib><creatorcontrib>Han, Yao</creatorcontrib><creatorcontrib>Xia, Xiaoxia</creatorcontrib><creatorcontrib>Zhou, Jin</creatorcontrib><creatorcontrib>Wang, Chunlan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Wang, Changyong</creatorcontrib><title>Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.</description><subject>Animals</subject><subject>Bombyx</subject><subject>Mice</subject><subject>Prostheses and Implants</subject><subject>Recombinant Proteins</subject><subject>Silk</subject><subject>Spiders</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LAzEQxYMotlavHiVnYWsmm_06SmlrYaGHKh6XJE22qftFsrX0vzeytTdP82Dee8z8EHoEMgVC4YVLx2szTQSBJKJXaAwZY0FKI3p90YyN0J1ze0LikJLoFo1oGqaMkXiMys2p6XeqNxLPm9I0SlnTlLjVeNOZrbJ4Y6ovvDDCS-7wqu4q3vRcVAqvO5_iFf7k36o8eLPDurU4b49B3jqHc1Puerz0G994j240r5x6OM8J-ljM32dvQb5ermavecDDLO4DmaQaQDIFlGpBt0JkaSJkFCYxI5IxyRMNHKKYhTKiIFXGSQoZMMEJTf1_EzQdeqX1N1ili86amttTAaT4JVYMxIozMR94GgLdQdRqe7H_IfKG58Hgg8W-PdjG3_9f2w-cMnY3</recordid><startdate>20170503</startdate><enddate>20170503</enddate><creator>Qiao, Xin</creator><creator>Qian, Zhigang</creator><creator>Li, Junjie</creator><creator>Sun, Hongji</creator><creator>Han, Yao</creator><creator>Xia, Xiaoxia</creator><creator>Zhou, Jin</creator><creator>Wang, Chunlan</creator><creator>Wang, Yan</creator><creator>Wang, Changyong</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1526-3308</orcidid><orcidid>https://orcid.org/0000-0001-8375-1616</orcidid></search><sort><creationdate>20170503</creationdate><title>Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding</title><author>Qiao, Xin ; Qian, Zhigang ; Li, Junjie ; Sun, Hongji ; Han, Yao ; Xia, Xiaoxia ; Zhou, Jin ; Wang, Chunlan ; Wang, Yan ; Wang, Changyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-c78f11c4e122fb2dbb987bc537640c44ca7f1a15643c521ce9a081914ba028063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Bombyx</topic><topic>Mice</topic><topic>Prostheses and Implants</topic><topic>Recombinant Proteins</topic><topic>Silk</topic><topic>Spiders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Xin</creatorcontrib><creatorcontrib>Qian, Zhigang</creatorcontrib><creatorcontrib>Li, Junjie</creatorcontrib><creatorcontrib>Sun, Hongji</creatorcontrib><creatorcontrib>Han, Yao</creatorcontrib><creatorcontrib>Xia, Xiaoxia</creatorcontrib><creatorcontrib>Zhou, Jin</creatorcontrib><creatorcontrib>Wang, Chunlan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Wang, Changyong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Xin</au><au>Qian, Zhigang</au><au>Li, Junjie</au><au>Sun, Hongji</au><au>Han, Yao</au><au>Xia, Xiaoxia</au><au>Zhou, Jin</au><au>Wang, Chunlan</au><au>Wang, Yan</au><au>Wang, Changyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-05-03</date><risdate>2017</risdate><volume>9</volume><issue>17</issue><spage>14665</spage><epage>14676</epage><pages>14665-14676</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28384406</pmid><doi>10.1021/acsami.7b01752</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1526-3308</orcidid><orcidid>https://orcid.org/0000-0001-8375-1616</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-05, Vol.9 (17), p.14665-14676
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_7b01752
source MEDLINE; ACS Publications
subjects Animals
Bombyx
Mice
Prostheses and Implants
Recombinant Proteins
Silk
Spiders
title Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Engineering%20of%20Spider%20Silk%20Fiber%20as%20Implantable%20Optical%20Waveguides%20for%20Low-Loss%20Light%20Guiding&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Qiao,%20Xin&rft.date=2017-05-03&rft.volume=9&rft.issue=17&rft.spage=14665&rft.epage=14676&rft.pages=14665-14676&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b01752&rft_dat=%3Cacs_cross%3Ea393257711%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28384406&rfr_iscdi=true