Spatiotemporal Control of Supramolecular Self-Assembly and Function

The enzyme-triggered self-assembly of peptides has flourished in controlling the self-assembly kinetics and producing nanostructures that are typically inaccessible by conventional self-assembly pathways. However, the diffusion and nanoscale chemical gradient of self-assembling peptides generated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-03, Vol.9 (11), p.10012-10018
Hauptverfasser: Zhan, Jie, Cai, Yanbin, Ji, Shenglu, He, Shuangshuang, Cao, Yi, Ding, Dan, Wang, Ling, Yang, Zhimou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10018
container_issue 11
container_start_page 10012
container_title ACS applied materials & interfaces
container_volume 9
creator Zhan, Jie
Cai, Yanbin
Ji, Shenglu
He, Shuangshuang
Cao, Yi
Ding, Dan
Wang, Ling
Yang, Zhimou
description The enzyme-triggered self-assembly of peptides has flourished in controlling the self-assembly kinetics and producing nanostructures that are typically inaccessible by conventional self-assembly pathways. However, the diffusion and nanoscale chemical gradient of self-assembling peptides generated by the enzyme also significantly affect the outcome of self-assembly, which has not been reported yet. In this work, we demonstrated for the first time a spatiotemporal control of enzyme-triggered peptide self-assembly. By simply adjusting the temperature, we could change both the catalytic activity of the enzyme of phosphatase and their aggregation states. The strategy kinetically controls the production rate of self-assembling peptides and spatially controls their distribution in the system, leading to the formation of nanoparticles at 37 °C and nanofibers at 4 °C. The nanofibers showed ∼10 times higher cellular uptake by 3T3 cells than the nanoparticles, thanks to their higher stability and more ordered structures. Using such spatiotemporal control, we could prepare optimized nanoprobes with low background fluorescence, rapid and high cellular uptake, and high sensitivity. We postulate that this strategy would be very useful in general for preparing self-assembled nanomaterials with controllable morphology and function.
doi_str_mv 10.1021/acsami.7b00784
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_7b00784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e87372399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-a63cb86408b7e00c3fb79437aae76397fcf8358456e6c21ae7d0a20c0f24e683</originalsourceid><addsrcrecordid>eNp1kDFrwzAQRkVpadK0a8fiueD0LMmSPAbTtIVAh2Q3Z0WCBNkykj3k39fBSbZOdxzvHXcfIa8ZLDOg2QfqiM1hKWsAqfgdmWcF56miOb2_9ZzPyFOMRwDBKOSPZEbPAJViTspth_3B96bpfECXlL7tg3eJt8l26AI23hk9OAzJ1jibrmI0Te1OCbb7ZD20enTbZ_Jg0UXzcqkLslt_7srvdPP79VOuNimyQvQpCqZrJTioWhoAzWwtC84kopGCFdJqq1iueC6M0DQbp3tAChos5UYotiDLaa0OPsZgbNWFQ4PhVGVQncOopjCqSxij8DYJ3VA3Zn_Dr9-PwPsEjGJ19ENox_P_2_YHC1JqIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatiotemporal Control of Supramolecular Self-Assembly and Function</title><source>ACS Publications</source><creator>Zhan, Jie ; Cai, Yanbin ; Ji, Shenglu ; He, Shuangshuang ; Cao, Yi ; Ding, Dan ; Wang, Ling ; Yang, Zhimou</creator><creatorcontrib>Zhan, Jie ; Cai, Yanbin ; Ji, Shenglu ; He, Shuangshuang ; Cao, Yi ; Ding, Dan ; Wang, Ling ; Yang, Zhimou</creatorcontrib><description>The enzyme-triggered self-assembly of peptides has flourished in controlling the self-assembly kinetics and producing nanostructures that are typically inaccessible by conventional self-assembly pathways. However, the diffusion and nanoscale chemical gradient of self-assembling peptides generated by the enzyme also significantly affect the outcome of self-assembly, which has not been reported yet. In this work, we demonstrated for the first time a spatiotemporal control of enzyme-triggered peptide self-assembly. By simply adjusting the temperature, we could change both the catalytic activity of the enzyme of phosphatase and their aggregation states. The strategy kinetically controls the production rate of self-assembling peptides and spatially controls their distribution in the system, leading to the formation of nanoparticles at 37 °C and nanofibers at 4 °C. The nanofibers showed ∼10 times higher cellular uptake by 3T3 cells than the nanoparticles, thanks to their higher stability and more ordered structures. Using such spatiotemporal control, we could prepare optimized nanoprobes with low background fluorescence, rapid and high cellular uptake, and high sensitivity. We postulate that this strategy would be very useful in general for preparing self-assembled nanomaterials with controllable morphology and function.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b00784</identifier><identifier>PMID: 28252276</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-03, Vol.9 (11), p.10012-10018</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-a63cb86408b7e00c3fb79437aae76397fcf8358456e6c21ae7d0a20c0f24e683</citedby><cites>FETCH-LOGICAL-a396t-a63cb86408b7e00c3fb79437aae76397fcf8358456e6c21ae7d0a20c0f24e683</cites><orcidid>0000-0003-1493-7868 ; 0000-0003-2967-6920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b00784$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b00784$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28252276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Jie</creatorcontrib><creatorcontrib>Cai, Yanbin</creatorcontrib><creatorcontrib>Ji, Shenglu</creatorcontrib><creatorcontrib>He, Shuangshuang</creatorcontrib><creatorcontrib>Cao, Yi</creatorcontrib><creatorcontrib>Ding, Dan</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Yang, Zhimou</creatorcontrib><title>Spatiotemporal Control of Supramolecular Self-Assembly and Function</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The enzyme-triggered self-assembly of peptides has flourished in controlling the self-assembly kinetics and producing nanostructures that are typically inaccessible by conventional self-assembly pathways. However, the diffusion and nanoscale chemical gradient of self-assembling peptides generated by the enzyme also significantly affect the outcome of self-assembly, which has not been reported yet. In this work, we demonstrated for the first time a spatiotemporal control of enzyme-triggered peptide self-assembly. By simply adjusting the temperature, we could change both the catalytic activity of the enzyme of phosphatase and their aggregation states. The strategy kinetically controls the production rate of self-assembling peptides and spatially controls their distribution in the system, leading to the formation of nanoparticles at 37 °C and nanofibers at 4 °C. The nanofibers showed ∼10 times higher cellular uptake by 3T3 cells than the nanoparticles, thanks to their higher stability and more ordered structures. Using such spatiotemporal control, we could prepare optimized nanoprobes with low background fluorescence, rapid and high cellular uptake, and high sensitivity. We postulate that this strategy would be very useful in general for preparing self-assembled nanomaterials with controllable morphology and function.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDFrwzAQRkVpadK0a8fiueD0LMmSPAbTtIVAh2Q3Z0WCBNkykj3k39fBSbZOdxzvHXcfIa8ZLDOg2QfqiM1hKWsAqfgdmWcF56miOb2_9ZzPyFOMRwDBKOSPZEbPAJViTspth_3B96bpfECXlL7tg3eJt8l26AI23hk9OAzJ1jibrmI0Te1OCbb7ZD20enTbZ_Jg0UXzcqkLslt_7srvdPP79VOuNimyQvQpCqZrJTioWhoAzWwtC84kopGCFdJqq1iueC6M0DQbp3tAChos5UYotiDLaa0OPsZgbNWFQ4PhVGVQncOopjCqSxij8DYJ3VA3Zn_Dr9-PwPsEjGJ19ENox_P_2_YHC1JqIQ</recordid><startdate>20170322</startdate><enddate>20170322</enddate><creator>Zhan, Jie</creator><creator>Cai, Yanbin</creator><creator>Ji, Shenglu</creator><creator>He, Shuangshuang</creator><creator>Cao, Yi</creator><creator>Ding, Dan</creator><creator>Wang, Ling</creator><creator>Yang, Zhimou</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1493-7868</orcidid><orcidid>https://orcid.org/0000-0003-2967-6920</orcidid></search><sort><creationdate>20170322</creationdate><title>Spatiotemporal Control of Supramolecular Self-Assembly and Function</title><author>Zhan, Jie ; Cai, Yanbin ; Ji, Shenglu ; He, Shuangshuang ; Cao, Yi ; Ding, Dan ; Wang, Ling ; Yang, Zhimou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-a63cb86408b7e00c3fb79437aae76397fcf8358456e6c21ae7d0a20c0f24e683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Jie</creatorcontrib><creatorcontrib>Cai, Yanbin</creatorcontrib><creatorcontrib>Ji, Shenglu</creatorcontrib><creatorcontrib>He, Shuangshuang</creatorcontrib><creatorcontrib>Cao, Yi</creatorcontrib><creatorcontrib>Ding, Dan</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Yang, Zhimou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Jie</au><au>Cai, Yanbin</au><au>Ji, Shenglu</au><au>He, Shuangshuang</au><au>Cao, Yi</au><au>Ding, Dan</au><au>Wang, Ling</au><au>Yang, Zhimou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Control of Supramolecular Self-Assembly and Function</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-03-22</date><risdate>2017</risdate><volume>9</volume><issue>11</issue><spage>10012</spage><epage>10018</epage><pages>10012-10018</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The enzyme-triggered self-assembly of peptides has flourished in controlling the self-assembly kinetics and producing nanostructures that are typically inaccessible by conventional self-assembly pathways. However, the diffusion and nanoscale chemical gradient of self-assembling peptides generated by the enzyme also significantly affect the outcome of self-assembly, which has not been reported yet. In this work, we demonstrated for the first time a spatiotemporal control of enzyme-triggered peptide self-assembly. By simply adjusting the temperature, we could change both the catalytic activity of the enzyme of phosphatase and their aggregation states. The strategy kinetically controls the production rate of self-assembling peptides and spatially controls their distribution in the system, leading to the formation of nanoparticles at 37 °C and nanofibers at 4 °C. The nanofibers showed ∼10 times higher cellular uptake by 3T3 cells than the nanoparticles, thanks to their higher stability and more ordered structures. Using such spatiotemporal control, we could prepare optimized nanoprobes with low background fluorescence, rapid and high cellular uptake, and high sensitivity. We postulate that this strategy would be very useful in general for preparing self-assembled nanomaterials with controllable morphology and function.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28252276</pmid><doi>10.1021/acsami.7b00784</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1493-7868</orcidid><orcidid>https://orcid.org/0000-0003-2967-6920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-03, Vol.9 (11), p.10012-10018
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_7b00784
source ACS Publications
title Spatiotemporal Control of Supramolecular Self-Assembly and Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Control%20of%20Supramolecular%20Self-Assembly%20and%20Function&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhan,%20Jie&rft.date=2017-03-22&rft.volume=9&rft.issue=11&rft.spage=10012&rft.epage=10018&rft.pages=10012-10018&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b00784&rft_dat=%3Cacs_cross%3Ee87372399%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28252276&rfr_iscdi=true