Ozone-Based Sequential Infiltration Synthesis of Al 2 O 3 Nanostructures in Symmetric Block Copolymer

Sequential infiltration synthesis (SIS) provides an original strategy to grow inorganic materials by infiltrating gaseous precursors in polymeric films. Combined with microphase-separated nanostructures resulting from block copolymer (BCP) self-assembly, SIS selectively binds the precursors to only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-12, Vol.8 (49), p.33933-33942
Hauptverfasser: Frascaroli, Jacopo, Cianci, Elena, Spiga, Sabina, Seguini, Gabriele, Perego, Michele
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33942
container_issue 49
container_start_page 33933
container_title ACS applied materials & interfaces
container_volume 8
creator Frascaroli, Jacopo
Cianci, Elena
Spiga, Sabina
Seguini, Gabriele
Perego, Michele
description Sequential infiltration synthesis (SIS) provides an original strategy to grow inorganic materials by infiltrating gaseous precursors in polymeric films. Combined with microphase-separated nanostructures resulting from block copolymer (BCP) self-assembly, SIS selectively binds the precursors to only one domain, mimicking the morphology of the original BCP template. This methodology represents a smart solution for the fabrication of inorganic nanostructures starting from self-assembled BCP thin films, in view of advanced lithographic application and of functional nanostructure synthesis. The SIS process using trimethylaluminum (TMA) and H O precursors in self-assembled PS-b-PMMA BCP thin films was established as a model system, where the PMMA phase is selectively infiltrated. However, the temperature range allowed by polymeric material restricts the available precursors to highly reactive reagents, such as TMA. In order to extend the SIS methodology and access a wide library of materials, a crucial step is the implementation of processes using reactive reagents that are fully compatible with the initial polymeric template. This work reports a comprehensive morphological (SEM, SE, AFM) and physicochemical (XPS) investigation of alumina nanostructures synthesized by means of a SIS process using O as oxygen precursor in self-assembled PS-b-PMMA thin films with lamellar morphology. The comparison with the H O-based SIS process validates the possibility to use O as oxygen precursor, expanding the possible range of precursors for the fabrication of inorganic nanostructures.
doi_str_mv 10.1021/acsami.6b11340
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_6b11340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27960442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1072-3d43688c3b91e0b9b7836b1fdb9caff8b3e3adc3fd013fa6e87b33693c1185b93</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EoqWwMiL_gRTbr5uPsa34qFSRoTBHtvNaGJK42MlQfj2tWjrdDXcn3UPIPWdTzgR_VCaq1k1TzTlIdkHGvJAyycVMXJ69lCNyE-MXYykINrsmI5EVKZNSjAmWv77DZKEi1nSDPwN2vVMNXXXWNX1QvfMd3ey6_hOji9RbOm-ooCUF-qY6H_swmH4IGKk75NoW--AMXTTefNOl3_pm12K4JVdWNRHvTjohH89P78vXZF2-rJbzdWI4y0QCtYQ0zw3ogiPThc5y2D-ztS6MsjbXgKBqA7ZmHKxKMc80QFqA4Tyf6QImZHrcNcHHGNBW2-BaFXYVZ9WBV3XkVZ147QsPx8J20C3W5_g_IPgDP55okg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ozone-Based Sequential Infiltration Synthesis of Al 2 O 3 Nanostructures in Symmetric Block Copolymer</title><source>ACS Publications</source><creator>Frascaroli, Jacopo ; Cianci, Elena ; Spiga, Sabina ; Seguini, Gabriele ; Perego, Michele</creator><creatorcontrib>Frascaroli, Jacopo ; Cianci, Elena ; Spiga, Sabina ; Seguini, Gabriele ; Perego, Michele</creatorcontrib><description>Sequential infiltration synthesis (SIS) provides an original strategy to grow inorganic materials by infiltrating gaseous precursors in polymeric films. Combined with microphase-separated nanostructures resulting from block copolymer (BCP) self-assembly, SIS selectively binds the precursors to only one domain, mimicking the morphology of the original BCP template. This methodology represents a smart solution for the fabrication of inorganic nanostructures starting from self-assembled BCP thin films, in view of advanced lithographic application and of functional nanostructure synthesis. The SIS process using trimethylaluminum (TMA) and H O precursors in self-assembled PS-b-PMMA BCP thin films was established as a model system, where the PMMA phase is selectively infiltrated. However, the temperature range allowed by polymeric material restricts the available precursors to highly reactive reagents, such as TMA. In order to extend the SIS methodology and access a wide library of materials, a crucial step is the implementation of processes using reactive reagents that are fully compatible with the initial polymeric template. This work reports a comprehensive morphological (SEM, SE, AFM) and physicochemical (XPS) investigation of alumina nanostructures synthesized by means of a SIS process using O as oxygen precursor in self-assembled PS-b-PMMA thin films with lamellar morphology. The comparison with the H O-based SIS process validates the possibility to use O as oxygen precursor, expanding the possible range of precursors for the fabrication of inorganic nanostructures.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b11340</identifier><identifier>PMID: 27960442</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2016-12, Vol.8 (49), p.33933-33942</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1072-3d43688c3b91e0b9b7836b1fdb9caff8b3e3adc3fd013fa6e87b33693c1185b93</citedby><cites>FETCH-LOGICAL-c1072-3d43688c3b91e0b9b7836b1fdb9caff8b3e3adc3fd013fa6e87b33693c1185b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27960442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frascaroli, Jacopo</creatorcontrib><creatorcontrib>Cianci, Elena</creatorcontrib><creatorcontrib>Spiga, Sabina</creatorcontrib><creatorcontrib>Seguini, Gabriele</creatorcontrib><creatorcontrib>Perego, Michele</creatorcontrib><title>Ozone-Based Sequential Infiltration Synthesis of Al 2 O 3 Nanostructures in Symmetric Block Copolymer</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Sequential infiltration synthesis (SIS) provides an original strategy to grow inorganic materials by infiltrating gaseous precursors in polymeric films. Combined with microphase-separated nanostructures resulting from block copolymer (BCP) self-assembly, SIS selectively binds the precursors to only one domain, mimicking the morphology of the original BCP template. This methodology represents a smart solution for the fabrication of inorganic nanostructures starting from self-assembled BCP thin films, in view of advanced lithographic application and of functional nanostructure synthesis. The SIS process using trimethylaluminum (TMA) and H O precursors in self-assembled PS-b-PMMA BCP thin films was established as a model system, where the PMMA phase is selectively infiltrated. However, the temperature range allowed by polymeric material restricts the available precursors to highly reactive reagents, such as TMA. In order to extend the SIS methodology and access a wide library of materials, a crucial step is the implementation of processes using reactive reagents that are fully compatible with the initial polymeric template. This work reports a comprehensive morphological (SEM, SE, AFM) and physicochemical (XPS) investigation of alumina nanostructures synthesized by means of a SIS process using O as oxygen precursor in self-assembled PS-b-PMMA thin films with lamellar morphology. The comparison with the H O-based SIS process validates the possibility to use O as oxygen precursor, expanding the possible range of precursors for the fabrication of inorganic nanostructures.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EoqWwMiL_gRTbr5uPsa34qFSRoTBHtvNaGJK42MlQfj2tWjrdDXcn3UPIPWdTzgR_VCaq1k1TzTlIdkHGvJAyycVMXJ69lCNyE-MXYykINrsmI5EVKZNSjAmWv77DZKEi1nSDPwN2vVMNXXXWNX1QvfMd3ey6_hOji9RbOm-ooCUF-qY6H_swmH4IGKk75NoW--AMXTTefNOl3_pm12K4JVdWNRHvTjohH89P78vXZF2-rJbzdWI4y0QCtYQ0zw3ogiPThc5y2D-ztS6MsjbXgKBqA7ZmHKxKMc80QFqA4Tyf6QImZHrcNcHHGNBW2-BaFXYVZ9WBV3XkVZ147QsPx8J20C3W5_g_IPgDP55okg</recordid><startdate>20161214</startdate><enddate>20161214</enddate><creator>Frascaroli, Jacopo</creator><creator>Cianci, Elena</creator><creator>Spiga, Sabina</creator><creator>Seguini, Gabriele</creator><creator>Perego, Michele</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161214</creationdate><title>Ozone-Based Sequential Infiltration Synthesis of Al 2 O 3 Nanostructures in Symmetric Block Copolymer</title><author>Frascaroli, Jacopo ; Cianci, Elena ; Spiga, Sabina ; Seguini, Gabriele ; Perego, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1072-3d43688c3b91e0b9b7836b1fdb9caff8b3e3adc3fd013fa6e87b33693c1185b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frascaroli, Jacopo</creatorcontrib><creatorcontrib>Cianci, Elena</creatorcontrib><creatorcontrib>Spiga, Sabina</creatorcontrib><creatorcontrib>Seguini, Gabriele</creatorcontrib><creatorcontrib>Perego, Michele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frascaroli, Jacopo</au><au>Cianci, Elena</au><au>Spiga, Sabina</au><au>Seguini, Gabriele</au><au>Perego, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ozone-Based Sequential Infiltration Synthesis of Al 2 O 3 Nanostructures in Symmetric Block Copolymer</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2016-12-14</date><risdate>2016</risdate><volume>8</volume><issue>49</issue><spage>33933</spage><epage>33942</epage><pages>33933-33942</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Sequential infiltration synthesis (SIS) provides an original strategy to grow inorganic materials by infiltrating gaseous precursors in polymeric films. Combined with microphase-separated nanostructures resulting from block copolymer (BCP) self-assembly, SIS selectively binds the precursors to only one domain, mimicking the morphology of the original BCP template. This methodology represents a smart solution for the fabrication of inorganic nanostructures starting from self-assembled BCP thin films, in view of advanced lithographic application and of functional nanostructure synthesis. The SIS process using trimethylaluminum (TMA) and H O precursors in self-assembled PS-b-PMMA BCP thin films was established as a model system, where the PMMA phase is selectively infiltrated. However, the temperature range allowed by polymeric material restricts the available precursors to highly reactive reagents, such as TMA. In order to extend the SIS methodology and access a wide library of materials, a crucial step is the implementation of processes using reactive reagents that are fully compatible with the initial polymeric template. This work reports a comprehensive morphological (SEM, SE, AFM) and physicochemical (XPS) investigation of alumina nanostructures synthesized by means of a SIS process using O as oxygen precursor in self-assembled PS-b-PMMA thin films with lamellar morphology. The comparison with the H O-based SIS process validates the possibility to use O as oxygen precursor, expanding the possible range of precursors for the fabrication of inorganic nanostructures.</abstract><cop>United States</cop><pmid>27960442</pmid><doi>10.1021/acsami.6b11340</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-12, Vol.8 (49), p.33933-33942
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_6b11340
source ACS Publications
title Ozone-Based Sequential Infiltration Synthesis of Al 2 O 3 Nanostructures in Symmetric Block Copolymer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ozone-Based%20Sequential%20Infiltration%20Synthesis%20of%20Al%202%20O%203%20Nanostructures%20in%20Symmetric%20Block%20Copolymer&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Frascaroli,%20Jacopo&rft.date=2016-12-14&rft.volume=8&rft.issue=49&rft.spage=33933&rft.epage=33942&rft.pages=33933-33942&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b11340&rft_dat=%3Cpubmed_cross%3E27960442%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27960442&rfr_iscdi=true