Polycrystalline CoO x ‑Bo Hybrid as Proficient Electrocatalyst for Addressing Kinetically Sluggish Anodic Reaction in Water Splitting

Herein, we demonstrated that a polycrystalline cobalt oxide/borate (CoO x -Bo) hybrid catalyst prepared by coprecipitation followed a simple annealing process with a viable boron source of less hazardous ammonium borate, an efficient electrocatalyst for the oxygen evolution reaction (OER). The borat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2025-01, Vol.17 (1), p.835-847
Hauptverfasser: Ashok, Venkatachalam, Gayathri, Arunagiri, Vijayarangan, Murugan, Sangamithirai, Muthukumaran, Jayabharathi, Jayaraman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 847
container_issue 1
container_start_page 835
container_title ACS applied materials & interfaces
container_volume 17
creator Ashok, Venkatachalam
Gayathri, Arunagiri
Vijayarangan, Murugan
Sangamithirai, Muthukumaran
Jayabharathi, Jayaraman
description Herein, we demonstrated that a polycrystalline cobalt oxide/borate (CoO x -Bo) hybrid catalyst prepared by coprecipitation followed a simple annealing process with a viable boron source of less hazardous ammonium borate, an efficient electrocatalyst for the oxygen evolution reaction (OER). The borate species in the crystalline cobalt oxide lattice provides a tunable polycrystalline morphology with a defect-rich lattice and numerous grain boundaries in the CoO x -Bo hybrid electrocatalyst, which significantly boosts the OER activity compared to the crystalline counterparts of Co3O4 and precious IrO2 in a harsh alkaline electrolyte (1 M KOH). The borate modulated CoO x -Bo achieves a 10 mA/cm2 geometrical current density for the OER with a very low overpotential (η) of 271 mV and small Tafel slope of 34 mV dec–1, in an inert glassy carbon (GC) support, while only requiring η10 of 267 and 32 mV dec–1 in a 3D nickel foam (NF) support at the same current density. The CoO x -Bo catalyst assembled in a two-electrode system with a standard Pt–C cathode only consumed 1.53 V potential bias and exhibited robust stability up to 150 h@10 mA/cm2. The CoO x -Bo is irreversibly oxidized to CoOOH active transformation via surface reconstruction during the OER condition. The cyclic voltammogram (CV) profiles, RRDE evaluation, and postcharacterization observation revealed the formation of a CoOOH active phase upon the long-term OER process and corresponding surface reconstruction. This research provides a new way to synthesize defect-rich, short-range ordered structures of polycrystalline materials with numerous grain boundaries and lays valuable experimental and postcharacterization foundations for the structure and properties of OER catalysts.
doi_str_mv 10.1021/acsami.4c13444
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_4c13444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c884643213</sourcerecordid><originalsourceid>FETCH-LOGICAL-a182t-bc842ed9339b888c20ee398a2061dc6065c949f211050609325049a365fd8a0d3</originalsourceid><addsrcrecordid>eNp1kD1LAzEch4MotlZXR8ksXM3bHclYS7ViocUqjkea5GrK9VKSFLzNzdmv6Ccx0trNKf_h9zyEB4BLjPoYEXwjVZBr22cKU8bYEehiwVjGSU6ODzdjHXAWwgqhghKUn4IOFQXnmPEu-Jy5ulW-DVHWtW0MHLopfIffH1-3Do7bhbcaygBn3lVWWdNEOKqNit4pmYiEwcp5ONDamxBss4SPSRKtSrYWzuvtcmnDGxw0TlsFn4xU0boG2ga-ymg8nG9qG2PizsFJJetgLvZvD7zcjZ6H42wyvX8YDiaZxJzEbKE4I0YLSsWCc64IMoYKLgkqsFYFKnIlmKgIxihHBRKU5IgJSYu80lwiTXugv_Mq70Lwpio33q6lb0uMyt-i5a5ouS-agKsdsNku1kYf5n8J0-B6N0hguXJb36T__2f7AU0Hgy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polycrystalline CoO x ‑Bo Hybrid as Proficient Electrocatalyst for Addressing Kinetically Sluggish Anodic Reaction in Water Splitting</title><source>ACS Publications</source><creator>Ashok, Venkatachalam ; Gayathri, Arunagiri ; Vijayarangan, Murugan ; Sangamithirai, Muthukumaran ; Jayabharathi, Jayaraman</creator><creatorcontrib>Ashok, Venkatachalam ; Gayathri, Arunagiri ; Vijayarangan, Murugan ; Sangamithirai, Muthukumaran ; Jayabharathi, Jayaraman</creatorcontrib><description>Herein, we demonstrated that a polycrystalline cobalt oxide/borate (CoO x -Bo) hybrid catalyst prepared by coprecipitation followed a simple annealing process with a viable boron source of less hazardous ammonium borate, an efficient electrocatalyst for the oxygen evolution reaction (OER). The borate species in the crystalline cobalt oxide lattice provides a tunable polycrystalline morphology with a defect-rich lattice and numerous grain boundaries in the CoO x -Bo hybrid electrocatalyst, which significantly boosts the OER activity compared to the crystalline counterparts of Co3O4 and precious IrO2 in a harsh alkaline electrolyte (1 M KOH). The borate modulated CoO x -Bo achieves a 10 mA/cm2 geometrical current density for the OER with a very low overpotential (η) of 271 mV and small Tafel slope of 34 mV dec–1, in an inert glassy carbon (GC) support, while only requiring η10 of 267 and 32 mV dec–1 in a 3D nickel foam (NF) support at the same current density. The CoO x -Bo catalyst assembled in a two-electrode system with a standard Pt–C cathode only consumed 1.53 V potential bias and exhibited robust stability up to 150 h@10 mA/cm2. The CoO x -Bo is irreversibly oxidized to CoOOH active transformation via surface reconstruction during the OER condition. The cyclic voltammogram (CV) profiles, RRDE evaluation, and postcharacterization observation revealed the formation of a CoOOH active phase upon the long-term OER process and corresponding surface reconstruction. This research provides a new way to synthesize defect-rich, short-range ordered structures of polycrystalline materials with numerous grain boundaries and lays valuable experimental and postcharacterization foundations for the structure and properties of OER catalysts.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c13444</identifier><identifier>PMID: 39688148</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2025-01, Vol.17 (1), p.835-847</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a182t-bc842ed9339b888c20ee398a2061dc6065c949f211050609325049a365fd8a0d3</cites><orcidid>0000-0002-9508-5988 ; 0009-0001-5551-0513 ; 0009-0004-2040-5862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c13444$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c13444$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39688148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashok, Venkatachalam</creatorcontrib><creatorcontrib>Gayathri, Arunagiri</creatorcontrib><creatorcontrib>Vijayarangan, Murugan</creatorcontrib><creatorcontrib>Sangamithirai, Muthukumaran</creatorcontrib><creatorcontrib>Jayabharathi, Jayaraman</creatorcontrib><title>Polycrystalline CoO x ‑Bo Hybrid as Proficient Electrocatalyst for Addressing Kinetically Sluggish Anodic Reaction in Water Splitting</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Herein, we demonstrated that a polycrystalline cobalt oxide/borate (CoO x -Bo) hybrid catalyst prepared by coprecipitation followed a simple annealing process with a viable boron source of less hazardous ammonium borate, an efficient electrocatalyst for the oxygen evolution reaction (OER). The borate species in the crystalline cobalt oxide lattice provides a tunable polycrystalline morphology with a defect-rich lattice and numerous grain boundaries in the CoO x -Bo hybrid electrocatalyst, which significantly boosts the OER activity compared to the crystalline counterparts of Co3O4 and precious IrO2 in a harsh alkaline electrolyte (1 M KOH). The borate modulated CoO x -Bo achieves a 10 mA/cm2 geometrical current density for the OER with a very low overpotential (η) of 271 mV and small Tafel slope of 34 mV dec–1, in an inert glassy carbon (GC) support, while only requiring η10 of 267 and 32 mV dec–1 in a 3D nickel foam (NF) support at the same current density. The CoO x -Bo catalyst assembled in a two-electrode system with a standard Pt–C cathode only consumed 1.53 V potential bias and exhibited robust stability up to 150 h@10 mA/cm2. The CoO x -Bo is irreversibly oxidized to CoOOH active transformation via surface reconstruction during the OER condition. The cyclic voltammogram (CV) profiles, RRDE evaluation, and postcharacterization observation revealed the formation of a CoOOH active phase upon the long-term OER process and corresponding surface reconstruction. This research provides a new way to synthesize defect-rich, short-range ordered structures of polycrystalline materials with numerous grain boundaries and lays valuable experimental and postcharacterization foundations for the structure and properties of OER catalysts.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kD1LAzEch4MotlZXR8ksXM3bHclYS7ViocUqjkea5GrK9VKSFLzNzdmv6Ccx0trNKf_h9zyEB4BLjPoYEXwjVZBr22cKU8bYEehiwVjGSU6ODzdjHXAWwgqhghKUn4IOFQXnmPEu-Jy5ulW-DVHWtW0MHLopfIffH1-3Do7bhbcaygBn3lVWWdNEOKqNit4pmYiEwcp5ONDamxBss4SPSRKtSrYWzuvtcmnDGxw0TlsFn4xU0boG2ga-ymg8nG9qG2PizsFJJetgLvZvD7zcjZ6H42wyvX8YDiaZxJzEbKE4I0YLSsWCc64IMoYKLgkqsFYFKnIlmKgIxihHBRKU5IgJSYu80lwiTXugv_Mq70Lwpio33q6lb0uMyt-i5a5ouS-agKsdsNku1kYf5n8J0-B6N0hguXJb36T__2f7AU0Hgy0</recordid><startdate>20250108</startdate><enddate>20250108</enddate><creator>Ashok, Venkatachalam</creator><creator>Gayathri, Arunagiri</creator><creator>Vijayarangan, Murugan</creator><creator>Sangamithirai, Muthukumaran</creator><creator>Jayabharathi, Jayaraman</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9508-5988</orcidid><orcidid>https://orcid.org/0009-0001-5551-0513</orcidid><orcidid>https://orcid.org/0009-0004-2040-5862</orcidid></search><sort><creationdate>20250108</creationdate><title>Polycrystalline CoO x ‑Bo Hybrid as Proficient Electrocatalyst for Addressing Kinetically Sluggish Anodic Reaction in Water Splitting</title><author>Ashok, Venkatachalam ; Gayathri, Arunagiri ; Vijayarangan, Murugan ; Sangamithirai, Muthukumaran ; Jayabharathi, Jayaraman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a182t-bc842ed9339b888c20ee398a2061dc6065c949f211050609325049a365fd8a0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashok, Venkatachalam</creatorcontrib><creatorcontrib>Gayathri, Arunagiri</creatorcontrib><creatorcontrib>Vijayarangan, Murugan</creatorcontrib><creatorcontrib>Sangamithirai, Muthukumaran</creatorcontrib><creatorcontrib>Jayabharathi, Jayaraman</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashok, Venkatachalam</au><au>Gayathri, Arunagiri</au><au>Vijayarangan, Murugan</au><au>Sangamithirai, Muthukumaran</au><au>Jayabharathi, Jayaraman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polycrystalline CoO x ‑Bo Hybrid as Proficient Electrocatalyst for Addressing Kinetically Sluggish Anodic Reaction in Water Splitting</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2025-01-08</date><risdate>2025</risdate><volume>17</volume><issue>1</issue><spage>835</spage><epage>847</epage><pages>835-847</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Herein, we demonstrated that a polycrystalline cobalt oxide/borate (CoO x -Bo) hybrid catalyst prepared by coprecipitation followed a simple annealing process with a viable boron source of less hazardous ammonium borate, an efficient electrocatalyst for the oxygen evolution reaction (OER). The borate species in the crystalline cobalt oxide lattice provides a tunable polycrystalline morphology with a defect-rich lattice and numerous grain boundaries in the CoO x -Bo hybrid electrocatalyst, which significantly boosts the OER activity compared to the crystalline counterparts of Co3O4 and precious IrO2 in a harsh alkaline electrolyte (1 M KOH). The borate modulated CoO x -Bo achieves a 10 mA/cm2 geometrical current density for the OER with a very low overpotential (η) of 271 mV and small Tafel slope of 34 mV dec–1, in an inert glassy carbon (GC) support, while only requiring η10 of 267 and 32 mV dec–1 in a 3D nickel foam (NF) support at the same current density. The CoO x -Bo catalyst assembled in a two-electrode system with a standard Pt–C cathode only consumed 1.53 V potential bias and exhibited robust stability up to 150 h@10 mA/cm2. The CoO x -Bo is irreversibly oxidized to CoOOH active transformation via surface reconstruction during the OER condition. The cyclic voltammogram (CV) profiles, RRDE evaluation, and postcharacterization observation revealed the formation of a CoOOH active phase upon the long-term OER process and corresponding surface reconstruction. This research provides a new way to synthesize defect-rich, short-range ordered structures of polycrystalline materials with numerous grain boundaries and lays valuable experimental and postcharacterization foundations for the structure and properties of OER catalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39688148</pmid><doi>10.1021/acsami.4c13444</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9508-5988</orcidid><orcidid>https://orcid.org/0009-0001-5551-0513</orcidid><orcidid>https://orcid.org/0009-0004-2040-5862</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2025-01, Vol.17 (1), p.835-847
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_4c13444
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Polycrystalline CoO x ‑Bo Hybrid as Proficient Electrocatalyst for Addressing Kinetically Sluggish Anodic Reaction in Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polycrystalline%20CoO%20x%20%E2%80%91Bo%20Hybrid%20as%20Proficient%20Electrocatalyst%20for%20Addressing%20Kinetically%20Sluggish%20Anodic%20Reaction%20in%20Water%20Splitting&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ashok,%20Venkatachalam&rft.date=2025-01-08&rft.volume=17&rft.issue=1&rft.spage=835&rft.epage=847&rft.pages=835-847&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c13444&rft_dat=%3Cacs_cross%3Ec884643213%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39688148&rfr_iscdi=true