Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium-Metal Electrode: The Case of LLZO|Li 6 PS 5 Cl and LLZO|Li 7 P 3 S 11

Developing solid-state batteries (SSB) with a lithium metal electrode (LME) using only one type of solid electrolyte (SE) is a significant challenge since no SE fits all the requirements imposed by both electrodes. A possible solution is using multilayer SSBs with an LME where the drawbacks of each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-10, Vol.16 (40), p.54847-54863
Hauptverfasser: Merola, Leonardo, Singh, Vipin K, Palmer, Max, Eckhardt, Janis K, Benz, Sebastian L, Fuchs, Till, Nazar, Linda F, Sakamoto, Jeff, Richter, Felix H, Janek, Jürgen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54863
container_issue 40
container_start_page 54847
container_title ACS applied materials & interfaces
container_volume 16
creator Merola, Leonardo
Singh, Vipin K
Palmer, Max
Eckhardt, Janis K
Benz, Sebastian L
Fuchs, Till
Nazar, Linda F
Sakamoto, Jeff
Richter, Felix H
Janek, Jürgen
description Developing solid-state batteries (SSB) with a lithium metal electrode (LME) using only one type of solid electrolyte (SE) is a significant challenge since no SE fits all the requirements imposed by both electrodes. A possible solution is using multilayer SSBs with an LME where the drawbacks of each SE are overcome by using layers of different SEs. However, research on inorganic SE |SE heteroionic interfaces is still quite preliminary, especially regarding oxide|sulfide heteroionic interfaces. This work reports the electrochemical investigation of the heteroionic interface between Li Al La Zr O (Al-LLZO) and two representative materials for sulfide-based SEs: argyrodite-based Li PS Cl (LPSCl) and glass-like Li P S (LPS711). Through in-depth temperature- and pressure-dependent impedance analyses of multilayer symmetric cells at equilibrium (i.e., no current load), the electrical properties of the heteroionic interfaces are assessed. The pressure-dependent kinetic of the Al-LLZO|LPSCl pair is interpreted with the concept of geometric constriction resistance and show that its resistance is lower than for the Al-LLZO|LPS711 pair. Furthermore, the effect of Al-LLZO surface treatment on the electrical properties of the Al-LLZO|LPSCl heteroionic interface is evaluated. Such investigation shows that the value of the interface activation energy decreases when the Al-LLZO surface is heat treated, revealing a significant influence of the carbonate/hydroxide passivation layer on the heteroionic interface. Additionally, by cycling the symmetric cell for 900 h at 1.0 mAh·cm , it is revealed that the Al-LLZO|LPSCl interface has a lower impedance increase than the Al-LLZO|LPS711 interface, especially if the Al-LLZO is heat treated. With this work, we highlight that the oxide|argyrodite combination can be a promising candidate for multilayer SSBs with an LME. However, we show that an optimized LLZO surface treatment and chemical analysis of the interface are recommended for future research.
doi_str_mv 10.1021/acsami.4c11597
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_4c11597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39316658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628-55a7f37a1df55d527d1c4d989319f1e938070d9b76560d008c82d2bc6a30b2493</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBCI8rpyRPsDKX7EeXCDUh5SUJHSE5fIsdfUyGmqxC0g8Vv8H0GFnma0M7OrHULOGR0zytml0r1q3DjWjMk83SNHLI_jKOOS7-94HI_Icd-_UZoITuUhGYlcsCSR2RH5nm6UX6vg2iW0FmYfzuBXufZ2QHjAgF07SE7D43LgVmmEMqjaeRc-wbYd3OIGfbtyy1coW-9MNMgB4UaFwe-wh3cXFqCgGMCtm-gJg_Iw9ahD1xq8gvkCYaJ6_D1fFC-zr8JBAs8lSJh4UEuzm6bwDAJKYOyUHFjlezz7wxMyv5vOJw9RMbt_nFwXkU54FkmpUitSxYyV0kieGqZjk2fD87llmIuMptTkdZrIhBpKM51xw2udKEFrHufihIy3a3XX9n2Htlp1rlHdZ8Vo9Vt_ta2_-qt_CFxsA6t13aDZ2f_7Fj_odYDN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium-Metal Electrode: The Case of LLZO|Li 6 PS 5 Cl and LLZO|Li 7 P 3 S 11</title><source>ACS Publications</source><creator>Merola, Leonardo ; Singh, Vipin K ; Palmer, Max ; Eckhardt, Janis K ; Benz, Sebastian L ; Fuchs, Till ; Nazar, Linda F ; Sakamoto, Jeff ; Richter, Felix H ; Janek, Jürgen</creator><creatorcontrib>Merola, Leonardo ; Singh, Vipin K ; Palmer, Max ; Eckhardt, Janis K ; Benz, Sebastian L ; Fuchs, Till ; Nazar, Linda F ; Sakamoto, Jeff ; Richter, Felix H ; Janek, Jürgen</creatorcontrib><description>Developing solid-state batteries (SSB) with a lithium metal electrode (LME) using only one type of solid electrolyte (SE) is a significant challenge since no SE fits all the requirements imposed by both electrodes. A possible solution is using multilayer SSBs with an LME where the drawbacks of each SE are overcome by using layers of different SEs. However, research on inorganic SE |SE heteroionic interfaces is still quite preliminary, especially regarding oxide|sulfide heteroionic interfaces. This work reports the electrochemical investigation of the heteroionic interface between Li Al La Zr O (Al-LLZO) and two representative materials for sulfide-based SEs: argyrodite-based Li PS Cl (LPSCl) and glass-like Li P S (LPS711). Through in-depth temperature- and pressure-dependent impedance analyses of multilayer symmetric cells at equilibrium (i.e., no current load), the electrical properties of the heteroionic interfaces are assessed. The pressure-dependent kinetic of the Al-LLZO|LPSCl pair is interpreted with the concept of geometric constriction resistance and show that its resistance is lower than for the Al-LLZO|LPS711 pair. Furthermore, the effect of Al-LLZO surface treatment on the electrical properties of the Al-LLZO|LPSCl heteroionic interface is evaluated. Such investigation shows that the value of the interface activation energy decreases when the Al-LLZO surface is heat treated, revealing a significant influence of the carbonate/hydroxide passivation layer on the heteroionic interface. Additionally, by cycling the symmetric cell for 900 h at 1.0 mAh·cm , it is revealed that the Al-LLZO|LPSCl interface has a lower impedance increase than the Al-LLZO|LPS711 interface, especially if the Al-LLZO is heat treated. With this work, we highlight that the oxide|argyrodite combination can be a promising candidate for multilayer SSBs with an LME. However, we show that an optimized LLZO surface treatment and chemical analysis of the interface are recommended for future research.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c11597</identifier><identifier>PMID: 39316658</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2024-10, Vol.16 (40), p.54847-54863</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c628-55a7f37a1df55d527d1c4d989319f1e938070d9b76560d008c82d2bc6a30b2493</cites><orcidid>0000-0002-2799-0599 ; 0000-0003-0455-6738 ; 0000-0002-6587-7757 ; 0000-0002-9221-4756 ; 0000-0002-3314-8197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39316658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merola, Leonardo</creatorcontrib><creatorcontrib>Singh, Vipin K</creatorcontrib><creatorcontrib>Palmer, Max</creatorcontrib><creatorcontrib>Eckhardt, Janis K</creatorcontrib><creatorcontrib>Benz, Sebastian L</creatorcontrib><creatorcontrib>Fuchs, Till</creatorcontrib><creatorcontrib>Nazar, Linda F</creatorcontrib><creatorcontrib>Sakamoto, Jeff</creatorcontrib><creatorcontrib>Richter, Felix H</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><title>Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium-Metal Electrode: The Case of LLZO|Li 6 PS 5 Cl and LLZO|Li 7 P 3 S 11</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Developing solid-state batteries (SSB) with a lithium metal electrode (LME) using only one type of solid electrolyte (SE) is a significant challenge since no SE fits all the requirements imposed by both electrodes. A possible solution is using multilayer SSBs with an LME where the drawbacks of each SE are overcome by using layers of different SEs. However, research on inorganic SE |SE heteroionic interfaces is still quite preliminary, especially regarding oxide|sulfide heteroionic interfaces. This work reports the electrochemical investigation of the heteroionic interface between Li Al La Zr O (Al-LLZO) and two representative materials for sulfide-based SEs: argyrodite-based Li PS Cl (LPSCl) and glass-like Li P S (LPS711). Through in-depth temperature- and pressure-dependent impedance analyses of multilayer symmetric cells at equilibrium (i.e., no current load), the electrical properties of the heteroionic interfaces are assessed. The pressure-dependent kinetic of the Al-LLZO|LPSCl pair is interpreted with the concept of geometric constriction resistance and show that its resistance is lower than for the Al-LLZO|LPS711 pair. Furthermore, the effect of Al-LLZO surface treatment on the electrical properties of the Al-LLZO|LPSCl heteroionic interface is evaluated. Such investigation shows that the value of the interface activation energy decreases when the Al-LLZO surface is heat treated, revealing a significant influence of the carbonate/hydroxide passivation layer on the heteroionic interface. Additionally, by cycling the symmetric cell for 900 h at 1.0 mAh·cm , it is revealed that the Al-LLZO|LPSCl interface has a lower impedance increase than the Al-LLZO|LPS711 interface, especially if the Al-LLZO is heat treated. With this work, we highlight that the oxide|argyrodite combination can be a promising candidate for multilayer SSBs with an LME. However, we show that an optimized LLZO surface treatment and chemical analysis of the interface are recommended for future research.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBCI8rpyRPsDKX7EeXCDUh5SUJHSE5fIsdfUyGmqxC0g8Vv8H0GFnma0M7OrHULOGR0zytml0r1q3DjWjMk83SNHLI_jKOOS7-94HI_Icd-_UZoITuUhGYlcsCSR2RH5nm6UX6vg2iW0FmYfzuBXufZ2QHjAgF07SE7D43LgVmmEMqjaeRc-wbYd3OIGfbtyy1coW-9MNMgB4UaFwe-wh3cXFqCgGMCtm-gJg_Iw9ahD1xq8gvkCYaJ6_D1fFC-zr8JBAs8lSJh4UEuzm6bwDAJKYOyUHFjlezz7wxMyv5vOJw9RMbt_nFwXkU54FkmpUitSxYyV0kieGqZjk2fD87llmIuMptTkdZrIhBpKM51xw2udKEFrHufihIy3a3XX9n2Htlp1rlHdZ8Vo9Vt_ta2_-qt_CFxsA6t13aDZ2f_7Fj_odYDN</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Merola, Leonardo</creator><creator>Singh, Vipin K</creator><creator>Palmer, Max</creator><creator>Eckhardt, Janis K</creator><creator>Benz, Sebastian L</creator><creator>Fuchs, Till</creator><creator>Nazar, Linda F</creator><creator>Sakamoto, Jeff</creator><creator>Richter, Felix H</creator><creator>Janek, Jürgen</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2799-0599</orcidid><orcidid>https://orcid.org/0000-0003-0455-6738</orcidid><orcidid>https://orcid.org/0000-0002-6587-7757</orcidid><orcidid>https://orcid.org/0000-0002-9221-4756</orcidid><orcidid>https://orcid.org/0000-0002-3314-8197</orcidid></search><sort><creationdate>20241009</creationdate><title>Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium-Metal Electrode: The Case of LLZO|Li 6 PS 5 Cl and LLZO|Li 7 P 3 S 11</title><author>Merola, Leonardo ; Singh, Vipin K ; Palmer, Max ; Eckhardt, Janis K ; Benz, Sebastian L ; Fuchs, Till ; Nazar, Linda F ; Sakamoto, Jeff ; Richter, Felix H ; Janek, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628-55a7f37a1df55d527d1c4d989319f1e938070d9b76560d008c82d2bc6a30b2493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merola, Leonardo</creatorcontrib><creatorcontrib>Singh, Vipin K</creatorcontrib><creatorcontrib>Palmer, Max</creatorcontrib><creatorcontrib>Eckhardt, Janis K</creatorcontrib><creatorcontrib>Benz, Sebastian L</creatorcontrib><creatorcontrib>Fuchs, Till</creatorcontrib><creatorcontrib>Nazar, Linda F</creatorcontrib><creatorcontrib>Sakamoto, Jeff</creatorcontrib><creatorcontrib>Richter, Felix H</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merola, Leonardo</au><au>Singh, Vipin K</au><au>Palmer, Max</au><au>Eckhardt, Janis K</au><au>Benz, Sebastian L</au><au>Fuchs, Till</au><au>Nazar, Linda F</au><au>Sakamoto, Jeff</au><au>Richter, Felix H</au><au>Janek, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium-Metal Electrode: The Case of LLZO|Li 6 PS 5 Cl and LLZO|Li 7 P 3 S 11</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2024-10-09</date><risdate>2024</risdate><volume>16</volume><issue>40</issue><spage>54847</spage><epage>54863</epage><pages>54847-54863</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Developing solid-state batteries (SSB) with a lithium metal electrode (LME) using only one type of solid electrolyte (SE) is a significant challenge since no SE fits all the requirements imposed by both electrodes. A possible solution is using multilayer SSBs with an LME where the drawbacks of each SE are overcome by using layers of different SEs. However, research on inorganic SE |SE heteroionic interfaces is still quite preliminary, especially regarding oxide|sulfide heteroionic interfaces. This work reports the electrochemical investigation of the heteroionic interface between Li Al La Zr O (Al-LLZO) and two representative materials for sulfide-based SEs: argyrodite-based Li PS Cl (LPSCl) and glass-like Li P S (LPS711). Through in-depth temperature- and pressure-dependent impedance analyses of multilayer symmetric cells at equilibrium (i.e., no current load), the electrical properties of the heteroionic interfaces are assessed. The pressure-dependent kinetic of the Al-LLZO|LPSCl pair is interpreted with the concept of geometric constriction resistance and show that its resistance is lower than for the Al-LLZO|LPS711 pair. Furthermore, the effect of Al-LLZO surface treatment on the electrical properties of the Al-LLZO|LPSCl heteroionic interface is evaluated. Such investigation shows that the value of the interface activation energy decreases when the Al-LLZO surface is heat treated, revealing a significant influence of the carbonate/hydroxide passivation layer on the heteroionic interface. Additionally, by cycling the symmetric cell for 900 h at 1.0 mAh·cm , it is revealed that the Al-LLZO|LPSCl interface has a lower impedance increase than the Al-LLZO|LPS711 interface, especially if the Al-LLZO is heat treated. With this work, we highlight that the oxide|argyrodite combination can be a promising candidate for multilayer SSBs with an LME. However, we show that an optimized LLZO surface treatment and chemical analysis of the interface are recommended for future research.</abstract><cop>United States</cop><pmid>39316658</pmid><doi>10.1021/acsami.4c11597</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2799-0599</orcidid><orcidid>https://orcid.org/0000-0003-0455-6738</orcidid><orcidid>https://orcid.org/0000-0002-6587-7757</orcidid><orcidid>https://orcid.org/0000-0002-9221-4756</orcidid><orcidid>https://orcid.org/0000-0002-3314-8197</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-10, Vol.16 (40), p.54847-54863
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_4c11597
source ACS Publications
title Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium-Metal Electrode: The Case of LLZO|Li 6 PS 5 Cl and LLZO|Li 7 P 3 S 11
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Oxide%7CSulfide%20Heteroionic%20Interface%20Stability%20for%20Developing%20Solid-State%20Batteries%20with%20a%20Lithium-Metal%20Electrode:%20The%20Case%20of%20LLZO%7CLi%206%20PS%205%20Cl%20and%20LLZO%7CLi%207%20P%203%20S%2011&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Merola,%20Leonardo&rft.date=2024-10-09&rft.volume=16&rft.issue=40&rft.spage=54847&rft.epage=54863&rft.pages=54847-54863&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c11597&rft_dat=%3Cpubmed_cross%3E39316658%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39316658&rfr_iscdi=true