Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS 2 Nanocrystal Layer

Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS ) NCs, free from toxic heavy-metal elements (e.g....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-06, Vol.16 (23), p.29610
Hauptverfasser: Balamur, Ridvan, Oh, Jae Taek, Karatum, Onuralp, Wang, Yongjie, Onal, Asim, Kaleli, Humeyra Nur, Pehlivan, Cigdem, Şahin, Afsun, Hasanreisoglu, Murat, Konstantatos, Gerasimos, Nizamoglu, Sedat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 29610
container_title ACS applied materials & interfaces
container_volume 16
creator Balamur, Ridvan
Oh, Jae Taek
Karatum, Onuralp
Wang, Yongjie
Onal, Asim
Kaleli, Humeyra Nur
Pehlivan, Cigdem
Şahin, Afsun
Hasanreisoglu, Murat
Konstantatos, Gerasimos
Nizamoglu, Sedat
description Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS ) NCs, free from toxic heavy-metal elements (e.g., Cd, Hg, and Pb), particularly offer an exceptional absorption coefficient exceeding 10 cm in the near-infrared (NIR), surpassing many of their inorganic counterparts. Here, we integrated an ultrathin (24 nm) AgBiS NC layer into a water-stable photovoltaic bioelectronic device architecture that showed a high capacitive photocurrent of 2.3 mA·cm in artificial cerebrospinal fluid (aCSF) and ionic charges over 10 μC·cm at a low NIR intensity of 0.5 mW·mm . The device without encapsulation showed a halftime of 12.5 years under passive accelerated aging test and did not show any toxicity on neurons. Furthermore, patch-clamp electrophysiology on primary hippocampal neurons under whole-cell configuration revealed that the device elicited neuron firing at intensity levels more than an order of magnitude below the established ocular safety limits. These findings point to the potential of AgBiS NCs for photovoltaic retinal prostheses.
doi_str_mv 10.1021/acsami.4c01964
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_4c01964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38807565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625-fd6f29e348143bcab2c4889b20da5d37c3c352a6f28c1229fcf135e79f68289c3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujEUS3Lk3_wGCfQ7tEAkpCcAGuJ3c6rdTMg7SFhH_vGJDVPck931l8CD1TMqaE0VcwERo_FoZQnYsbNKRaiEwxyW6vWYgBeojxh5CcMyLv0YArRSYyl0O0m8EejE_-aDG0FZ475423bcJrCyFbti5AsBXeJN8caki-a3Hn-uchdG3ERw89hr_qFCDtfIun329-gxleQ9uZcIoJaryCkw2P6M5BHe3T5Y7QdjHfzj6y1ef7cjZdZSZnMnNV7pi2XCgqeGmgZEYopUtGKpAVnxhuuGTQl5ShjGlnHOXSTrTLFVPa8BEan2dN6GIM1hX74BsIp4KS4s9YcTZWXIz1wMsZ2B_KxlbX-r8i_gv87mjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS 2 Nanocrystal Layer</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Balamur, Ridvan ; Oh, Jae Taek ; Karatum, Onuralp ; Wang, Yongjie ; Onal, Asim ; Kaleli, Humeyra Nur ; Pehlivan, Cigdem ; Şahin, Afsun ; Hasanreisoglu, Murat ; Konstantatos, Gerasimos ; Nizamoglu, Sedat</creator><creatorcontrib>Balamur, Ridvan ; Oh, Jae Taek ; Karatum, Onuralp ; Wang, Yongjie ; Onal, Asim ; Kaleli, Humeyra Nur ; Pehlivan, Cigdem ; Şahin, Afsun ; Hasanreisoglu, Murat ; Konstantatos, Gerasimos ; Nizamoglu, Sedat</creatorcontrib><description>Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS ) NCs, free from toxic heavy-metal elements (e.g., Cd, Hg, and Pb), particularly offer an exceptional absorption coefficient exceeding 10 cm in the near-infrared (NIR), surpassing many of their inorganic counterparts. Here, we integrated an ultrathin (24 nm) AgBiS NC layer into a water-stable photovoltaic bioelectronic device architecture that showed a high capacitive photocurrent of 2.3 mA·cm in artificial cerebrospinal fluid (aCSF) and ionic charges over 10 μC·cm at a low NIR intensity of 0.5 mW·mm . The device without encapsulation showed a halftime of 12.5 years under passive accelerated aging test and did not show any toxicity on neurons. Furthermore, patch-clamp electrophysiology on primary hippocampal neurons under whole-cell configuration revealed that the device elicited neuron firing at intensity levels more than an order of magnitude below the established ocular safety limits. These findings point to the potential of AgBiS NCs for photovoltaic retinal prostheses.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c01964</identifier><identifier>PMID: 38807565</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Bismuth - chemistry ; Hippocampus - cytology ; Infrared Rays ; Mice ; Nanoparticles - chemistry ; Neurons - cytology ; Rats ; Silver - chemistry ; Silver Compounds - chemistry ; Sulfides - chemistry ; Sulfides - radiation effects</subject><ispartof>ACS applied materials &amp; interfaces, 2024-06, Vol.16 (23), p.29610</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c625-fd6f29e348143bcab2c4889b20da5d37c3c352a6f28c1229fcf135e79f68289c3</cites><orcidid>0000-0002-4355-7592 ; 0000-0003-3682-6042 ; 0009-0002-2549-3983 ; 0000-0002-7669-9589 ; 0000-0003-0394-5790 ; 0000-0002-6901-0667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38807565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balamur, Ridvan</creatorcontrib><creatorcontrib>Oh, Jae Taek</creatorcontrib><creatorcontrib>Karatum, Onuralp</creatorcontrib><creatorcontrib>Wang, Yongjie</creatorcontrib><creatorcontrib>Onal, Asim</creatorcontrib><creatorcontrib>Kaleli, Humeyra Nur</creatorcontrib><creatorcontrib>Pehlivan, Cigdem</creatorcontrib><creatorcontrib>Şahin, Afsun</creatorcontrib><creatorcontrib>Hasanreisoglu, Murat</creatorcontrib><creatorcontrib>Konstantatos, Gerasimos</creatorcontrib><creatorcontrib>Nizamoglu, Sedat</creatorcontrib><title>Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS 2 Nanocrystal Layer</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS ) NCs, free from toxic heavy-metal elements (e.g., Cd, Hg, and Pb), particularly offer an exceptional absorption coefficient exceeding 10 cm in the near-infrared (NIR), surpassing many of their inorganic counterparts. Here, we integrated an ultrathin (24 nm) AgBiS NC layer into a water-stable photovoltaic bioelectronic device architecture that showed a high capacitive photocurrent of 2.3 mA·cm in artificial cerebrospinal fluid (aCSF) and ionic charges over 10 μC·cm at a low NIR intensity of 0.5 mW·mm . The device without encapsulation showed a halftime of 12.5 years under passive accelerated aging test and did not show any toxicity on neurons. Furthermore, patch-clamp electrophysiology on primary hippocampal neurons under whole-cell configuration revealed that the device elicited neuron firing at intensity levels more than an order of magnitude below the established ocular safety limits. These findings point to the potential of AgBiS NCs for photovoltaic retinal prostheses.</description><subject>Animals</subject><subject>Bismuth - chemistry</subject><subject>Hippocampus - cytology</subject><subject>Infrared Rays</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Neurons - cytology</subject><subject>Rats</subject><subject>Silver - chemistry</subject><subject>Silver Compounds - chemistry</subject><subject>Sulfides - chemistry</subject><subject>Sulfides - radiation effects</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtPAjEUhRujEUS3Lk3_wGCfQ7tEAkpCcAGuJ3c6rdTMg7SFhH_vGJDVPck931l8CD1TMqaE0VcwERo_FoZQnYsbNKRaiEwxyW6vWYgBeojxh5CcMyLv0YArRSYyl0O0m8EejE_-aDG0FZ475423bcJrCyFbti5AsBXeJN8caki-a3Hn-uchdG3ERw89hr_qFCDtfIun329-gxleQ9uZcIoJaryCkw2P6M5BHe3T5Y7QdjHfzj6y1ef7cjZdZSZnMnNV7pi2XCgqeGmgZEYopUtGKpAVnxhuuGTQl5ShjGlnHOXSTrTLFVPa8BEan2dN6GIM1hX74BsIp4KS4s9YcTZWXIz1wMsZ2B_KxlbX-r8i_gv87mjQ</recordid><startdate>20240612</startdate><enddate>20240612</enddate><creator>Balamur, Ridvan</creator><creator>Oh, Jae Taek</creator><creator>Karatum, Onuralp</creator><creator>Wang, Yongjie</creator><creator>Onal, Asim</creator><creator>Kaleli, Humeyra Nur</creator><creator>Pehlivan, Cigdem</creator><creator>Şahin, Afsun</creator><creator>Hasanreisoglu, Murat</creator><creator>Konstantatos, Gerasimos</creator><creator>Nizamoglu, Sedat</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4355-7592</orcidid><orcidid>https://orcid.org/0000-0003-3682-6042</orcidid><orcidid>https://orcid.org/0009-0002-2549-3983</orcidid><orcidid>https://orcid.org/0000-0002-7669-9589</orcidid><orcidid>https://orcid.org/0000-0003-0394-5790</orcidid><orcidid>https://orcid.org/0000-0002-6901-0667</orcidid></search><sort><creationdate>20240612</creationdate><title>Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS 2 Nanocrystal Layer</title><author>Balamur, Ridvan ; Oh, Jae Taek ; Karatum, Onuralp ; Wang, Yongjie ; Onal, Asim ; Kaleli, Humeyra Nur ; Pehlivan, Cigdem ; Şahin, Afsun ; Hasanreisoglu, Murat ; Konstantatos, Gerasimos ; Nizamoglu, Sedat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625-fd6f29e348143bcab2c4889b20da5d37c3c352a6f28c1229fcf135e79f68289c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Bismuth - chemistry</topic><topic>Hippocampus - cytology</topic><topic>Infrared Rays</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Neurons - cytology</topic><topic>Rats</topic><topic>Silver - chemistry</topic><topic>Silver Compounds - chemistry</topic><topic>Sulfides - chemistry</topic><topic>Sulfides - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balamur, Ridvan</creatorcontrib><creatorcontrib>Oh, Jae Taek</creatorcontrib><creatorcontrib>Karatum, Onuralp</creatorcontrib><creatorcontrib>Wang, Yongjie</creatorcontrib><creatorcontrib>Onal, Asim</creatorcontrib><creatorcontrib>Kaleli, Humeyra Nur</creatorcontrib><creatorcontrib>Pehlivan, Cigdem</creatorcontrib><creatorcontrib>Şahin, Afsun</creatorcontrib><creatorcontrib>Hasanreisoglu, Murat</creatorcontrib><creatorcontrib>Konstantatos, Gerasimos</creatorcontrib><creatorcontrib>Nizamoglu, Sedat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balamur, Ridvan</au><au>Oh, Jae Taek</au><au>Karatum, Onuralp</au><au>Wang, Yongjie</au><au>Onal, Asim</au><au>Kaleli, Humeyra Nur</au><au>Pehlivan, Cigdem</au><au>Şahin, Afsun</au><au>Hasanreisoglu, Murat</au><au>Konstantatos, Gerasimos</au><au>Nizamoglu, Sedat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS 2 Nanocrystal Layer</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2024-06-12</date><risdate>2024</risdate><volume>16</volume><issue>23</issue><spage>29610</spage><pages>29610-</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS ) NCs, free from toxic heavy-metal elements (e.g., Cd, Hg, and Pb), particularly offer an exceptional absorption coefficient exceeding 10 cm in the near-infrared (NIR), surpassing many of their inorganic counterparts. Here, we integrated an ultrathin (24 nm) AgBiS NC layer into a water-stable photovoltaic bioelectronic device architecture that showed a high capacitive photocurrent of 2.3 mA·cm in artificial cerebrospinal fluid (aCSF) and ionic charges over 10 μC·cm at a low NIR intensity of 0.5 mW·mm . The device without encapsulation showed a halftime of 12.5 years under passive accelerated aging test and did not show any toxicity on neurons. Furthermore, patch-clamp electrophysiology on primary hippocampal neurons under whole-cell configuration revealed that the device elicited neuron firing at intensity levels more than an order of magnitude below the established ocular safety limits. These findings point to the potential of AgBiS NCs for photovoltaic retinal prostheses.</abstract><cop>United States</cop><pmid>38807565</pmid><doi>10.1021/acsami.4c01964</doi><orcidid>https://orcid.org/0000-0002-4355-7592</orcidid><orcidid>https://orcid.org/0000-0003-3682-6042</orcidid><orcidid>https://orcid.org/0009-0002-2549-3983</orcidid><orcidid>https://orcid.org/0000-0002-7669-9589</orcidid><orcidid>https://orcid.org/0000-0003-0394-5790</orcidid><orcidid>https://orcid.org/0000-0002-6901-0667</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-06, Vol.16 (23), p.29610
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_4c01964
source MEDLINE; American Chemical Society Journals
subjects Animals
Bismuth - chemistry
Hippocampus - cytology
Infrared Rays
Mice
Nanoparticles - chemistry
Neurons - cytology
Rats
Silver - chemistry
Silver Compounds - chemistry
Sulfides - chemistry
Sulfides - radiation effects
title Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS 2 Nanocrystal Layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacitive%20and%20Efficient%20Near-Infrared%20Stimulation%20of%20Neurons%20via%20an%20Ultrathin%20AgBiS%202%20Nanocrystal%20Layer&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Balamur,%20Ridvan&rft.date=2024-06-12&rft.volume=16&rft.issue=23&rft.spage=29610&rft.pages=29610-&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c01964&rft_dat=%3Cpubmed_cross%3E38807565%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38807565&rfr_iscdi=true