Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS 2 Nanocrystal Layer
Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS ) NCs, free from toxic heavy-metal elements (e.g....
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-06, Vol.16 (23), p.29610 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 29610 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Balamur, Ridvan Oh, Jae Taek Karatum, Onuralp Wang, Yongjie Onal, Asim Kaleli, Humeyra Nur Pehlivan, Cigdem Şahin, Afsun Hasanreisoglu, Murat Konstantatos, Gerasimos Nizamoglu, Sedat |
description | Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS
) NCs, free from toxic heavy-metal elements (e.g., Cd, Hg, and Pb), particularly offer an exceptional absorption coefficient exceeding 10
cm
in the near-infrared (NIR), surpassing many of their inorganic counterparts. Here, we integrated an ultrathin (24 nm) AgBiS
NC layer into a water-stable photovoltaic bioelectronic device architecture that showed a high capacitive photocurrent of 2.3 mA·cm
in artificial cerebrospinal fluid (aCSF) and ionic charges over 10 μC·cm
at a low NIR intensity of 0.5 mW·mm
. The device without encapsulation showed a halftime of 12.5 years under passive accelerated aging test and did not show any toxicity on neurons. Furthermore, patch-clamp electrophysiology on primary hippocampal neurons under whole-cell configuration revealed that the device elicited neuron firing at intensity levels more than an order of magnitude below the established ocular safety limits. These findings point to the potential of AgBiS
NCs for photovoltaic retinal prostheses. |
doi_str_mv | 10.1021/acsami.4c01964 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_4c01964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38807565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625-fd6f29e348143bcab2c4889b20da5d37c3c352a6f28c1229fcf135e79f68289c3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujEUS3Lk3_wGCfQ7tEAkpCcAGuJ3c6rdTMg7SFhH_vGJDVPck931l8CD1TMqaE0VcwERo_FoZQnYsbNKRaiEwxyW6vWYgBeojxh5CcMyLv0YArRSYyl0O0m8EejE_-aDG0FZ475423bcJrCyFbti5AsBXeJN8caki-a3Hn-uchdG3ERw89hr_qFCDtfIun329-gxleQ9uZcIoJaryCkw2P6M5BHe3T5Y7QdjHfzj6y1ef7cjZdZSZnMnNV7pi2XCgqeGmgZEYopUtGKpAVnxhuuGTQl5ShjGlnHOXSTrTLFVPa8BEan2dN6GIM1hX74BsIp4KS4s9YcTZWXIz1wMsZ2B_KxlbX-r8i_gv87mjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS 2 Nanocrystal Layer</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Balamur, Ridvan ; Oh, Jae Taek ; Karatum, Onuralp ; Wang, Yongjie ; Onal, Asim ; Kaleli, Humeyra Nur ; Pehlivan, Cigdem ; Şahin, Afsun ; Hasanreisoglu, Murat ; Konstantatos, Gerasimos ; Nizamoglu, Sedat</creator><creatorcontrib>Balamur, Ridvan ; Oh, Jae Taek ; Karatum, Onuralp ; Wang, Yongjie ; Onal, Asim ; Kaleli, Humeyra Nur ; Pehlivan, Cigdem ; Şahin, Afsun ; Hasanreisoglu, Murat ; Konstantatos, Gerasimos ; Nizamoglu, Sedat</creatorcontrib><description>Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS
) NCs, free from toxic heavy-metal elements (e.g., Cd, Hg, and Pb), particularly offer an exceptional absorption coefficient exceeding 10
cm
in the near-infrared (NIR), surpassing many of their inorganic counterparts. Here, we integrated an ultrathin (24 nm) AgBiS
NC layer into a water-stable photovoltaic bioelectronic device architecture that showed a high capacitive photocurrent of 2.3 mA·cm
in artificial cerebrospinal fluid (aCSF) and ionic charges over 10 μC·cm
at a low NIR intensity of 0.5 mW·mm
. The device without encapsulation showed a halftime of 12.5 years under passive accelerated aging test and did not show any toxicity on neurons. Furthermore, patch-clamp electrophysiology on primary hippocampal neurons under whole-cell configuration revealed that the device elicited neuron firing at intensity levels more than an order of magnitude below the established ocular safety limits. These findings point to the potential of AgBiS
NCs for photovoltaic retinal prostheses.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c01964</identifier><identifier>PMID: 38807565</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Bismuth - chemistry ; Hippocampus - cytology ; Infrared Rays ; Mice ; Nanoparticles - chemistry ; Neurons - cytology ; Rats ; Silver - chemistry ; Silver Compounds - chemistry ; Sulfides - chemistry ; Sulfides - radiation effects</subject><ispartof>ACS applied materials & interfaces, 2024-06, Vol.16 (23), p.29610</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c625-fd6f29e348143bcab2c4889b20da5d37c3c352a6f28c1229fcf135e79f68289c3</cites><orcidid>0000-0002-4355-7592 ; 0000-0003-3682-6042 ; 0009-0002-2549-3983 ; 0000-0002-7669-9589 ; 0000-0003-0394-5790 ; 0000-0002-6901-0667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38807565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balamur, Ridvan</creatorcontrib><creatorcontrib>Oh, Jae Taek</creatorcontrib><creatorcontrib>Karatum, Onuralp</creatorcontrib><creatorcontrib>Wang, Yongjie</creatorcontrib><creatorcontrib>Onal, Asim</creatorcontrib><creatorcontrib>Kaleli, Humeyra Nur</creatorcontrib><creatorcontrib>Pehlivan, Cigdem</creatorcontrib><creatorcontrib>Şahin, Afsun</creatorcontrib><creatorcontrib>Hasanreisoglu, Murat</creatorcontrib><creatorcontrib>Konstantatos, Gerasimos</creatorcontrib><creatorcontrib>Nizamoglu, Sedat</creatorcontrib><title>Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS 2 Nanocrystal Layer</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS
) NCs, free from toxic heavy-metal elements (e.g., Cd, Hg, and Pb), particularly offer an exceptional absorption coefficient exceeding 10
cm
in the near-infrared (NIR), surpassing many of their inorganic counterparts. Here, we integrated an ultrathin (24 nm) AgBiS
NC layer into a water-stable photovoltaic bioelectronic device architecture that showed a high capacitive photocurrent of 2.3 mA·cm
in artificial cerebrospinal fluid (aCSF) and ionic charges over 10 μC·cm
at a low NIR intensity of 0.5 mW·mm
. The device without encapsulation showed a halftime of 12.5 years under passive accelerated aging test and did not show any toxicity on neurons. Furthermore, patch-clamp electrophysiology on primary hippocampal neurons under whole-cell configuration revealed that the device elicited neuron firing at intensity levels more than an order of magnitude below the established ocular safety limits. These findings point to the potential of AgBiS
NCs for photovoltaic retinal prostheses.</description><subject>Animals</subject><subject>Bismuth - chemistry</subject><subject>Hippocampus - cytology</subject><subject>Infrared Rays</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Neurons - cytology</subject><subject>Rats</subject><subject>Silver - chemistry</subject><subject>Silver Compounds - chemistry</subject><subject>Sulfides - chemistry</subject><subject>Sulfides - radiation effects</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtPAjEUhRujEUS3Lk3_wGCfQ7tEAkpCcAGuJ3c6rdTMg7SFhH_vGJDVPck931l8CD1TMqaE0VcwERo_FoZQnYsbNKRaiEwxyW6vWYgBeojxh5CcMyLv0YArRSYyl0O0m8EejE_-aDG0FZ475423bcJrCyFbti5AsBXeJN8caki-a3Hn-uchdG3ERw89hr_qFCDtfIun329-gxleQ9uZcIoJaryCkw2P6M5BHe3T5Y7QdjHfzj6y1ef7cjZdZSZnMnNV7pi2XCgqeGmgZEYopUtGKpAVnxhuuGTQl5ShjGlnHOXSTrTLFVPa8BEan2dN6GIM1hX74BsIp4KS4s9YcTZWXIz1wMsZ2B_KxlbX-r8i_gv87mjQ</recordid><startdate>20240612</startdate><enddate>20240612</enddate><creator>Balamur, Ridvan</creator><creator>Oh, Jae Taek</creator><creator>Karatum, Onuralp</creator><creator>Wang, Yongjie</creator><creator>Onal, Asim</creator><creator>Kaleli, Humeyra Nur</creator><creator>Pehlivan, Cigdem</creator><creator>Şahin, Afsun</creator><creator>Hasanreisoglu, Murat</creator><creator>Konstantatos, Gerasimos</creator><creator>Nizamoglu, Sedat</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4355-7592</orcidid><orcidid>https://orcid.org/0000-0003-3682-6042</orcidid><orcidid>https://orcid.org/0009-0002-2549-3983</orcidid><orcidid>https://orcid.org/0000-0002-7669-9589</orcidid><orcidid>https://orcid.org/0000-0003-0394-5790</orcidid><orcidid>https://orcid.org/0000-0002-6901-0667</orcidid></search><sort><creationdate>20240612</creationdate><title>Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS 2 Nanocrystal Layer</title><author>Balamur, Ridvan ; Oh, Jae Taek ; Karatum, Onuralp ; Wang, Yongjie ; Onal, Asim ; Kaleli, Humeyra Nur ; Pehlivan, Cigdem ; Şahin, Afsun ; Hasanreisoglu, Murat ; Konstantatos, Gerasimos ; Nizamoglu, Sedat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625-fd6f29e348143bcab2c4889b20da5d37c3c352a6f28c1229fcf135e79f68289c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Bismuth - chemistry</topic><topic>Hippocampus - cytology</topic><topic>Infrared Rays</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Neurons - cytology</topic><topic>Rats</topic><topic>Silver - chemistry</topic><topic>Silver Compounds - chemistry</topic><topic>Sulfides - chemistry</topic><topic>Sulfides - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balamur, Ridvan</creatorcontrib><creatorcontrib>Oh, Jae Taek</creatorcontrib><creatorcontrib>Karatum, Onuralp</creatorcontrib><creatorcontrib>Wang, Yongjie</creatorcontrib><creatorcontrib>Onal, Asim</creatorcontrib><creatorcontrib>Kaleli, Humeyra Nur</creatorcontrib><creatorcontrib>Pehlivan, Cigdem</creatorcontrib><creatorcontrib>Şahin, Afsun</creatorcontrib><creatorcontrib>Hasanreisoglu, Murat</creatorcontrib><creatorcontrib>Konstantatos, Gerasimos</creatorcontrib><creatorcontrib>Nizamoglu, Sedat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balamur, Ridvan</au><au>Oh, Jae Taek</au><au>Karatum, Onuralp</au><au>Wang, Yongjie</au><au>Onal, Asim</au><au>Kaleli, Humeyra Nur</au><au>Pehlivan, Cigdem</au><au>Şahin, Afsun</au><au>Hasanreisoglu, Murat</au><au>Konstantatos, Gerasimos</au><au>Nizamoglu, Sedat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS 2 Nanocrystal Layer</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2024-06-12</date><risdate>2024</risdate><volume>16</volume><issue>23</issue><spage>29610</spage><pages>29610-</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS
) NCs, free from toxic heavy-metal elements (e.g., Cd, Hg, and Pb), particularly offer an exceptional absorption coefficient exceeding 10
cm
in the near-infrared (NIR), surpassing many of their inorganic counterparts. Here, we integrated an ultrathin (24 nm) AgBiS
NC layer into a water-stable photovoltaic bioelectronic device architecture that showed a high capacitive photocurrent of 2.3 mA·cm
in artificial cerebrospinal fluid (aCSF) and ionic charges over 10 μC·cm
at a low NIR intensity of 0.5 mW·mm
. The device without encapsulation showed a halftime of 12.5 years under passive accelerated aging test and did not show any toxicity on neurons. Furthermore, patch-clamp electrophysiology on primary hippocampal neurons under whole-cell configuration revealed that the device elicited neuron firing at intensity levels more than an order of magnitude below the established ocular safety limits. These findings point to the potential of AgBiS
NCs for photovoltaic retinal prostheses.</abstract><cop>United States</cop><pmid>38807565</pmid><doi>10.1021/acsami.4c01964</doi><orcidid>https://orcid.org/0000-0002-4355-7592</orcidid><orcidid>https://orcid.org/0000-0003-3682-6042</orcidid><orcidid>https://orcid.org/0009-0002-2549-3983</orcidid><orcidid>https://orcid.org/0000-0002-7669-9589</orcidid><orcidid>https://orcid.org/0000-0003-0394-5790</orcidid><orcidid>https://orcid.org/0000-0002-6901-0667</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-06, Vol.16 (23), p.29610 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_4c01964 |
source | MEDLINE; American Chemical Society Journals |
subjects | Animals Bismuth - chemistry Hippocampus - cytology Infrared Rays Mice Nanoparticles - chemistry Neurons - cytology Rats Silver - chemistry Silver Compounds - chemistry Sulfides - chemistry Sulfides - radiation effects |
title | Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS 2 Nanocrystal Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacitive%20and%20Efficient%20Near-Infrared%20Stimulation%20of%20Neurons%20via%20an%20Ultrathin%20AgBiS%202%20Nanocrystal%20Layer&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Balamur,%20Ridvan&rft.date=2024-06-12&rft.volume=16&rft.issue=23&rft.spage=29610&rft.pages=29610-&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c01964&rft_dat=%3Cpubmed_cross%3E38807565%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38807565&rfr_iscdi=true |