Van der Waals Epitaxy of Weyl-Semimetal T d ‑WTe 2

Epitaxial growth of WTe2 offers significant advantages, including the production of high-quality films, possible long-range in-plane ordering, and precise control over layer thicknesses. However, the mean island size of WTe2 grown by molecular beam epitaxy (MBE) in the literature is only a few tens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-04, Vol.16 (16), p.20878-20885
Hauptverfasser: Llopez, Alexandre, Leroy, Frédéric, Tagne-Kaegom, Calvin, Croes, Boris, Michon, Adrien, Mastropasqua, Chiara, Al Khalfioui, Mohamed, Curiotto, Stefano, Müller, Pierre, Saùl, Andrés, Kierren, Bertrand, Kremer, Geoffroy, Fèvre, Patrick Le, Bertran, François, Fagot-Revurat, Yannick, Cheynis, Fabien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20885
container_issue 16
container_start_page 20878
container_title ACS applied materials & interfaces
container_volume 16
creator Llopez, Alexandre
Leroy, Frédéric
Tagne-Kaegom, Calvin
Croes, Boris
Michon, Adrien
Mastropasqua, Chiara
Al Khalfioui, Mohamed
Curiotto, Stefano
Müller, Pierre
Saùl, Andrés
Kierren, Bertrand
Kremer, Geoffroy
Fèvre, Patrick Le
Bertran, François
Fagot-Revurat, Yannick
Cheynis, Fabien
description Epitaxial growth of WTe2 offers significant advantages, including the production of high-quality films, possible long-range in-plane ordering, and precise control over layer thicknesses. However, the mean island size of WTe2 grown by molecular beam epitaxy (MBE) in the literature is only a few tens of nanometers, which is not suitable for the implementation of devices at large lateral scales. Here we report the growth of Td -WTe2 ultrathin films by MBE on monolayer (ML) graphene, reaching a mean flake size of ≃110 nm, which is, on overage, more than three times larger than previous results. WTe2 films thicker than 5 nm have been successfully synthesized and exhibit the expected Td phase atomic structure. We rationalize the epitaxial growth of Td-WTe2 and propose a simple model to estimate the mean flake size as a function of growth parameters that can be applied to other transition metal dichalcogenides (TMDCs). Based on nucleation theory and the Kolmogorov–Johnson–Meh–Avrami (KJMA) equation, our analytical model supports experimental data showing a critical coverage of 0.13 ML above which WTe2 nucleation becomes negligible. The quality of monolayer WTe2 films is demonstrated by electronic band structure analysis using angle-resolved photoemission spectroscopy (ARPES), which is in agreement with first-principles calculations performed on free-standing WTe2 and previous reports. We found electron pockets at the Fermi level, indicating a n-type doping of WTe2 with an electron density of n = 2.0 ± 0.5 × 1012 cm–2 for each electron pocket.
doi_str_mv 10.1021/acsami.4c00676
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_4c00676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b347697123</sourcerecordid><originalsourceid>FETCH-LOGICAL-a182t-c3487186b38a9ff994ddf9d015d8b2105f1cfa7132b5d9b49fb0d2f190d594053</originalsourceid><addsrcrecordid>eNp1j71OwzAUhS0EoqWwMiLPSAm-jp3YI6rKj1SJgUBGy45tKVXSREkrkY1X4BV5EoxSujHdM3zn6H4IXQOJgVC40-WgmypmJSFplp6gOUjGIkE5PT1mxmboYhg2AUko4edolggus5TAHLF3vcXW9bjQuh7wqqt2-mPErceFG-vo1TVV43a6xjm2-Pvzq8gdppfozAfaXR3uAr09rPLlU7R-eXxe3q8jDYLuojJhIgORmkRo6b2UzFovLQFuhaFAuIfS6wwSariVhklviKUeJLFcMsKTBYqn3bJvh6F3XnV91eh-VEDUr76a9NVBPxRupkK3N42zR_zPNwC3ExCKatPu-234_7-1H7IJY08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Van der Waals Epitaxy of Weyl-Semimetal T d ‑WTe 2</title><source>ACS Publications</source><creator>Llopez, Alexandre ; Leroy, Frédéric ; Tagne-Kaegom, Calvin ; Croes, Boris ; Michon, Adrien ; Mastropasqua, Chiara ; Al Khalfioui, Mohamed ; Curiotto, Stefano ; Müller, Pierre ; Saùl, Andrés ; Kierren, Bertrand ; Kremer, Geoffroy ; Fèvre, Patrick Le ; Bertran, François ; Fagot-Revurat, Yannick ; Cheynis, Fabien</creator><creatorcontrib>Llopez, Alexandre ; Leroy, Frédéric ; Tagne-Kaegom, Calvin ; Croes, Boris ; Michon, Adrien ; Mastropasqua, Chiara ; Al Khalfioui, Mohamed ; Curiotto, Stefano ; Müller, Pierre ; Saùl, Andrés ; Kierren, Bertrand ; Kremer, Geoffroy ; Fèvre, Patrick Le ; Bertran, François ; Fagot-Revurat, Yannick ; Cheynis, Fabien</creatorcontrib><description>Epitaxial growth of WTe2 offers significant advantages, including the production of high-quality films, possible long-range in-plane ordering, and precise control over layer thicknesses. However, the mean island size of WTe2 grown by molecular beam epitaxy (MBE) in the literature is only a few tens of nanometers, which is not suitable for the implementation of devices at large lateral scales. Here we report the growth of Td -WTe2 ultrathin films by MBE on monolayer (ML) graphene, reaching a mean flake size of ≃110 nm, which is, on overage, more than three times larger than previous results. WTe2 films thicker than 5 nm have been successfully synthesized and exhibit the expected Td phase atomic structure. We rationalize the epitaxial growth of Td-WTe2 and propose a simple model to estimate the mean flake size as a function of growth parameters that can be applied to other transition metal dichalcogenides (TMDCs). Based on nucleation theory and the Kolmogorov–Johnson–Meh–Avrami (KJMA) equation, our analytical model supports experimental data showing a critical coverage of 0.13 ML above which WTe2 nucleation becomes negligible. The quality of monolayer WTe2 films is demonstrated by electronic band structure analysis using angle-resolved photoemission spectroscopy (ARPES), which is in agreement with first-principles calculations performed on free-standing WTe2 and previous reports. We found electron pockets at the Fermi level, indicating a n-type doping of WTe2 with an electron density of n = 2.0 ± 0.5 × 1012 cm–2 for each electron pocket.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c00676</identifier><identifier>PMID: 38597601</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials &amp; interfaces, 2024-04, Vol.16 (16), p.20878-20885</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a182t-c3487186b38a9ff994ddf9d015d8b2105f1cfa7132b5d9b49fb0d2f190d594053</cites><orcidid>0000-0002-7149-9772 ; 0000-0002-6127-2339 ; 0000-0003-1753-3471 ; 0000-0002-7332-0836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c00676$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c00676$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38597601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Llopez, Alexandre</creatorcontrib><creatorcontrib>Leroy, Frédéric</creatorcontrib><creatorcontrib>Tagne-Kaegom, Calvin</creatorcontrib><creatorcontrib>Croes, Boris</creatorcontrib><creatorcontrib>Michon, Adrien</creatorcontrib><creatorcontrib>Mastropasqua, Chiara</creatorcontrib><creatorcontrib>Al Khalfioui, Mohamed</creatorcontrib><creatorcontrib>Curiotto, Stefano</creatorcontrib><creatorcontrib>Müller, Pierre</creatorcontrib><creatorcontrib>Saùl, Andrés</creatorcontrib><creatorcontrib>Kierren, Bertrand</creatorcontrib><creatorcontrib>Kremer, Geoffroy</creatorcontrib><creatorcontrib>Fèvre, Patrick Le</creatorcontrib><creatorcontrib>Bertran, François</creatorcontrib><creatorcontrib>Fagot-Revurat, Yannick</creatorcontrib><creatorcontrib>Cheynis, Fabien</creatorcontrib><title>Van der Waals Epitaxy of Weyl-Semimetal T d ‑WTe 2</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Epitaxial growth of WTe2 offers significant advantages, including the production of high-quality films, possible long-range in-plane ordering, and precise control over layer thicknesses. However, the mean island size of WTe2 grown by molecular beam epitaxy (MBE) in the literature is only a few tens of nanometers, which is not suitable for the implementation of devices at large lateral scales. Here we report the growth of Td -WTe2 ultrathin films by MBE on monolayer (ML) graphene, reaching a mean flake size of ≃110 nm, which is, on overage, more than three times larger than previous results. WTe2 films thicker than 5 nm have been successfully synthesized and exhibit the expected Td phase atomic structure. We rationalize the epitaxial growth of Td-WTe2 and propose a simple model to estimate the mean flake size as a function of growth parameters that can be applied to other transition metal dichalcogenides (TMDCs). Based on nucleation theory and the Kolmogorov–Johnson–Meh–Avrami (KJMA) equation, our analytical model supports experimental data showing a critical coverage of 0.13 ML above which WTe2 nucleation becomes negligible. The quality of monolayer WTe2 films is demonstrated by electronic band structure analysis using angle-resolved photoemission spectroscopy (ARPES), which is in agreement with first-principles calculations performed on free-standing WTe2 and previous reports. We found electron pockets at the Fermi level, indicating a n-type doping of WTe2 with an electron density of n = 2.0 ± 0.5 × 1012 cm–2 for each electron pocket.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1j71OwzAUhS0EoqWwMiLPSAm-jp3YI6rKj1SJgUBGy45tKVXSREkrkY1X4BV5EoxSujHdM3zn6H4IXQOJgVC40-WgmypmJSFplp6gOUjGIkE5PT1mxmboYhg2AUko4edolggus5TAHLF3vcXW9bjQuh7wqqt2-mPErceFG-vo1TVV43a6xjm2-Pvzq8gdppfozAfaXR3uAr09rPLlU7R-eXxe3q8jDYLuojJhIgORmkRo6b2UzFovLQFuhaFAuIfS6wwSariVhklviKUeJLFcMsKTBYqn3bJvh6F3XnV91eh-VEDUr76a9NVBPxRupkK3N42zR_zPNwC3ExCKatPu-234_7-1H7IJY08</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Llopez, Alexandre</creator><creator>Leroy, Frédéric</creator><creator>Tagne-Kaegom, Calvin</creator><creator>Croes, Boris</creator><creator>Michon, Adrien</creator><creator>Mastropasqua, Chiara</creator><creator>Al Khalfioui, Mohamed</creator><creator>Curiotto, Stefano</creator><creator>Müller, Pierre</creator><creator>Saùl, Andrés</creator><creator>Kierren, Bertrand</creator><creator>Kremer, Geoffroy</creator><creator>Fèvre, Patrick Le</creator><creator>Bertran, François</creator><creator>Fagot-Revurat, Yannick</creator><creator>Cheynis, Fabien</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7149-9772</orcidid><orcidid>https://orcid.org/0000-0002-6127-2339</orcidid><orcidid>https://orcid.org/0000-0003-1753-3471</orcidid><orcidid>https://orcid.org/0000-0002-7332-0836</orcidid></search><sort><creationdate>20240410</creationdate><title>Van der Waals Epitaxy of Weyl-Semimetal T d ‑WTe 2</title><author>Llopez, Alexandre ; Leroy, Frédéric ; Tagne-Kaegom, Calvin ; Croes, Boris ; Michon, Adrien ; Mastropasqua, Chiara ; Al Khalfioui, Mohamed ; Curiotto, Stefano ; Müller, Pierre ; Saùl, Andrés ; Kierren, Bertrand ; Kremer, Geoffroy ; Fèvre, Patrick Le ; Bertran, François ; Fagot-Revurat, Yannick ; Cheynis, Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a182t-c3487186b38a9ff994ddf9d015d8b2105f1cfa7132b5d9b49fb0d2f190d594053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llopez, Alexandre</creatorcontrib><creatorcontrib>Leroy, Frédéric</creatorcontrib><creatorcontrib>Tagne-Kaegom, Calvin</creatorcontrib><creatorcontrib>Croes, Boris</creatorcontrib><creatorcontrib>Michon, Adrien</creatorcontrib><creatorcontrib>Mastropasqua, Chiara</creatorcontrib><creatorcontrib>Al Khalfioui, Mohamed</creatorcontrib><creatorcontrib>Curiotto, Stefano</creatorcontrib><creatorcontrib>Müller, Pierre</creatorcontrib><creatorcontrib>Saùl, Andrés</creatorcontrib><creatorcontrib>Kierren, Bertrand</creatorcontrib><creatorcontrib>Kremer, Geoffroy</creatorcontrib><creatorcontrib>Fèvre, Patrick Le</creatorcontrib><creatorcontrib>Bertran, François</creatorcontrib><creatorcontrib>Fagot-Revurat, Yannick</creatorcontrib><creatorcontrib>Cheynis, Fabien</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llopez, Alexandre</au><au>Leroy, Frédéric</au><au>Tagne-Kaegom, Calvin</au><au>Croes, Boris</au><au>Michon, Adrien</au><au>Mastropasqua, Chiara</au><au>Al Khalfioui, Mohamed</au><au>Curiotto, Stefano</au><au>Müller, Pierre</au><au>Saùl, Andrés</au><au>Kierren, Bertrand</au><au>Kremer, Geoffroy</au><au>Fèvre, Patrick Le</au><au>Bertran, François</au><au>Fagot-Revurat, Yannick</au><au>Cheynis, Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Van der Waals Epitaxy of Weyl-Semimetal T d ‑WTe 2</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-10</date><risdate>2024</risdate><volume>16</volume><issue>16</issue><spage>20878</spage><epage>20885</epage><pages>20878-20885</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Epitaxial growth of WTe2 offers significant advantages, including the production of high-quality films, possible long-range in-plane ordering, and precise control over layer thicknesses. However, the mean island size of WTe2 grown by molecular beam epitaxy (MBE) in the literature is only a few tens of nanometers, which is not suitable for the implementation of devices at large lateral scales. Here we report the growth of Td -WTe2 ultrathin films by MBE on monolayer (ML) graphene, reaching a mean flake size of ≃110 nm, which is, on overage, more than three times larger than previous results. WTe2 films thicker than 5 nm have been successfully synthesized and exhibit the expected Td phase atomic structure. We rationalize the epitaxial growth of Td-WTe2 and propose a simple model to estimate the mean flake size as a function of growth parameters that can be applied to other transition metal dichalcogenides (TMDCs). Based on nucleation theory and the Kolmogorov–Johnson–Meh–Avrami (KJMA) equation, our analytical model supports experimental data showing a critical coverage of 0.13 ML above which WTe2 nucleation becomes negligible. The quality of monolayer WTe2 films is demonstrated by electronic band structure analysis using angle-resolved photoemission spectroscopy (ARPES), which is in agreement with first-principles calculations performed on free-standing WTe2 and previous reports. We found electron pockets at the Fermi level, indicating a n-type doping of WTe2 with an electron density of n = 2.0 ± 0.5 × 1012 cm–2 for each electron pocket.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38597601</pmid><doi>10.1021/acsami.4c00676</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7149-9772</orcidid><orcidid>https://orcid.org/0000-0002-6127-2339</orcidid><orcidid>https://orcid.org/0000-0003-1753-3471</orcidid><orcidid>https://orcid.org/0000-0002-7332-0836</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-04, Vol.16 (16), p.20878-20885
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_4c00676
source ACS Publications
subjects Functional Nanostructured Materials (including low-D carbon)
title Van der Waals Epitaxy of Weyl-Semimetal T d ‑WTe 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Van%20der%20Waals%20Epitaxy%20of%20Weyl-Semimetal%20T%20d%20%E2%80%91WTe%202&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Llopez,%20Alexandre&rft.date=2024-04-10&rft.volume=16&rft.issue=16&rft.spage=20878&rft.epage=20885&rft.pages=20878-20885&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c00676&rft_dat=%3Cacs_cross%3Eb347697123%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38597601&rfr_iscdi=true