Improved Air Stability for High-Performance FACsPbI 3 Perovskite Solar Cells via Bonding Engineering

Despite the fact that perovskite solar cells (PSCs) are widely popular due to their superb power conversion efficiency (PCE), their further applications are still restricted by low stability and high-density defects. Especially, the weak binding and ion-electron properties of perovskite crystals mak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-01, Vol.16 (2), p.2408-2416
Hauptverfasser: Yu, Bo, Xu, Zhiwei, Liu, Hualin, Liu, Yumeng, Ye, Kanghua, Ke, Zhiquan, Zhang, Jiankai, Yu, Huangzhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2416
container_issue 2
container_start_page 2408
container_title ACS applied materials & interfaces
container_volume 16
creator Yu, Bo
Xu, Zhiwei
Liu, Hualin
Liu, Yumeng
Ye, Kanghua
Ke, Zhiquan
Zhang, Jiankai
Yu, Huangzhong
description Despite the fact that perovskite solar cells (PSCs) are widely popular due to their superb power conversion efficiency (PCE), their further applications are still restricted by low stability and high-density defects. Especially, the weak binding and ion-electron properties of perovskite crystals make them susceptible to moisture attack under environmental stress. Herein, we report an overall sulfidation strategy via introduction of 1-pentanethiol (PT) into the perovskite film to inhibit bulk defects and stabilize Pb ions. It has been confirmed that the thiol groups in PT can stabilize uncoordinated Pb ions and passivate iodine vacancy defects by forming strong Pb-S bonds, thus reducing nonradiative recombination. Moreover, the favorable passivation process also optimizes the energy-level arrangement, induces better perovskite crystallization, and enhances the charge extraction in the full solar cells. Consequently, the PT-modified inverted device delivers a champion PCE of 22.46%, which is superior to that of the control device (20.21%). More importantly, the PT-modified device retains 91.5% of its initial PCE after storage in air for 1600 h and over 85% of its initial PCE after heating at 85 °C for 800 h. This work provides a new perspective to simultaneously improve the performance and stability of PSCs to satisfy their commercial applications.
doi_str_mv 10.1021/acsami.3c16643
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_3c16643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38166358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1078-55b55c68ad1e7e04e93627aad8b4355c2f49976b75d6086ecda04b2983143beb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWwZYn8Ayl2_IizLFFLK1WiUmEd-TEphjwqu0Tq3xPU0tUczdw7i4PQIyVTSlL6rG3UjZ8yS6Xk7AqNac55olKRXl-Y8xG6i_GLEMlSIm7RiKkhzoQaI7dq9qHrweGZD3h70MbX_nDEVRfw0u8-kw2EgRvdWsCLWRE3ZoUZHrZdH7_9AfC2q3XABdR1xL3X-KVrnW93eN7ufAsQBr5HN5WuIzyc5wR9LObvxTJZv72uitk6sZRkKhHCCGGl0o5CBoRDzmSaae2U4Wy4pBXP80yaTDhJlATrNOEmzRWjnBkwbIKmp782dDEGqMp98I0Ox5KS8k9XedJVnnUNhadTYf9jGnCX-L8f9gvy0Wb-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved Air Stability for High-Performance FACsPbI 3 Perovskite Solar Cells via Bonding Engineering</title><source>American Chemical Society Journals</source><creator>Yu, Bo ; Xu, Zhiwei ; Liu, Hualin ; Liu, Yumeng ; Ye, Kanghua ; Ke, Zhiquan ; Zhang, Jiankai ; Yu, Huangzhong</creator><creatorcontrib>Yu, Bo ; Xu, Zhiwei ; Liu, Hualin ; Liu, Yumeng ; Ye, Kanghua ; Ke, Zhiquan ; Zhang, Jiankai ; Yu, Huangzhong</creatorcontrib><description>Despite the fact that perovskite solar cells (PSCs) are widely popular due to their superb power conversion efficiency (PCE), their further applications are still restricted by low stability and high-density defects. Especially, the weak binding and ion-electron properties of perovskite crystals make them susceptible to moisture attack under environmental stress. Herein, we report an overall sulfidation strategy via introduction of 1-pentanethiol (PT) into the perovskite film to inhibit bulk defects and stabilize Pb ions. It has been confirmed that the thiol groups in PT can stabilize uncoordinated Pb ions and passivate iodine vacancy defects by forming strong Pb-S bonds, thus reducing nonradiative recombination. Moreover, the favorable passivation process also optimizes the energy-level arrangement, induces better perovskite crystallization, and enhances the charge extraction in the full solar cells. Consequently, the PT-modified inverted device delivers a champion PCE of 22.46%, which is superior to that of the control device (20.21%). More importantly, the PT-modified device retains 91.5% of its initial PCE after storage in air for 1600 h and over 85% of its initial PCE after heating at 85 °C for 800 h. This work provides a new perspective to simultaneously improve the performance and stability of PSCs to satisfy their commercial applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c16643</identifier><identifier>PMID: 38166358</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2024-01, Vol.16 (2), p.2408-2416</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1078-55b55c68ad1e7e04e93627aad8b4355c2f49976b75d6086ecda04b2983143beb3</citedby><cites>FETCH-LOGICAL-c1078-55b55c68ad1e7e04e93627aad8b4355c2f49976b75d6086ecda04b2983143beb3</cites><orcidid>0000-0002-6382-4256 ; 0000-0002-0923-2321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38166358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Bo</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Liu, Hualin</creatorcontrib><creatorcontrib>Liu, Yumeng</creatorcontrib><creatorcontrib>Ye, Kanghua</creatorcontrib><creatorcontrib>Ke, Zhiquan</creatorcontrib><creatorcontrib>Zhang, Jiankai</creatorcontrib><creatorcontrib>Yu, Huangzhong</creatorcontrib><title>Improved Air Stability for High-Performance FACsPbI 3 Perovskite Solar Cells via Bonding Engineering</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Despite the fact that perovskite solar cells (PSCs) are widely popular due to their superb power conversion efficiency (PCE), their further applications are still restricted by low stability and high-density defects. Especially, the weak binding and ion-electron properties of perovskite crystals make them susceptible to moisture attack under environmental stress. Herein, we report an overall sulfidation strategy via introduction of 1-pentanethiol (PT) into the perovskite film to inhibit bulk defects and stabilize Pb ions. It has been confirmed that the thiol groups in PT can stabilize uncoordinated Pb ions and passivate iodine vacancy defects by forming strong Pb-S bonds, thus reducing nonradiative recombination. Moreover, the favorable passivation process also optimizes the energy-level arrangement, induces better perovskite crystallization, and enhances the charge extraction in the full solar cells. Consequently, the PT-modified inverted device delivers a champion PCE of 22.46%, which is superior to that of the control device (20.21%). More importantly, the PT-modified device retains 91.5% of its initial PCE after storage in air for 1600 h and over 85% of its initial PCE after heating at 85 °C for 800 h. This work provides a new perspective to simultaneously improve the performance and stability of PSCs to satisfy their commercial applications.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqWwZYn8Ayl2_IizLFFLK1WiUmEd-TEphjwqu0Tq3xPU0tUczdw7i4PQIyVTSlL6rG3UjZ8yS6Xk7AqNac55olKRXl-Y8xG6i_GLEMlSIm7RiKkhzoQaI7dq9qHrweGZD3h70MbX_nDEVRfw0u8-kw2EgRvdWsCLWRE3ZoUZHrZdH7_9AfC2q3XABdR1xL3X-KVrnW93eN7ufAsQBr5HN5WuIzyc5wR9LObvxTJZv72uitk6sZRkKhHCCGGl0o5CBoRDzmSaae2U4Wy4pBXP80yaTDhJlATrNOEmzRWjnBkwbIKmp782dDEGqMp98I0Ox5KS8k9XedJVnnUNhadTYf9jGnCX-L8f9gvy0Wb-</recordid><startdate>20240117</startdate><enddate>20240117</enddate><creator>Yu, Bo</creator><creator>Xu, Zhiwei</creator><creator>Liu, Hualin</creator><creator>Liu, Yumeng</creator><creator>Ye, Kanghua</creator><creator>Ke, Zhiquan</creator><creator>Zhang, Jiankai</creator><creator>Yu, Huangzhong</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6382-4256</orcidid><orcidid>https://orcid.org/0000-0002-0923-2321</orcidid></search><sort><creationdate>20240117</creationdate><title>Improved Air Stability for High-Performance FACsPbI 3 Perovskite Solar Cells via Bonding Engineering</title><author>Yu, Bo ; Xu, Zhiwei ; Liu, Hualin ; Liu, Yumeng ; Ye, Kanghua ; Ke, Zhiquan ; Zhang, Jiankai ; Yu, Huangzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1078-55b55c68ad1e7e04e93627aad8b4355c2f49976b75d6086ecda04b2983143beb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Bo</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Liu, Hualin</creatorcontrib><creatorcontrib>Liu, Yumeng</creatorcontrib><creatorcontrib>Ye, Kanghua</creatorcontrib><creatorcontrib>Ke, Zhiquan</creatorcontrib><creatorcontrib>Zhang, Jiankai</creatorcontrib><creatorcontrib>Yu, Huangzhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Bo</au><au>Xu, Zhiwei</au><au>Liu, Hualin</au><au>Liu, Yumeng</au><au>Ye, Kanghua</au><au>Ke, Zhiquan</au><au>Zhang, Jiankai</au><au>Yu, Huangzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Air Stability for High-Performance FACsPbI 3 Perovskite Solar Cells via Bonding Engineering</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2024-01-17</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>2408</spage><epage>2416</epage><pages>2408-2416</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Despite the fact that perovskite solar cells (PSCs) are widely popular due to their superb power conversion efficiency (PCE), their further applications are still restricted by low stability and high-density defects. Especially, the weak binding and ion-electron properties of perovskite crystals make them susceptible to moisture attack under environmental stress. Herein, we report an overall sulfidation strategy via introduction of 1-pentanethiol (PT) into the perovskite film to inhibit bulk defects and stabilize Pb ions. It has been confirmed that the thiol groups in PT can stabilize uncoordinated Pb ions and passivate iodine vacancy defects by forming strong Pb-S bonds, thus reducing nonradiative recombination. Moreover, the favorable passivation process also optimizes the energy-level arrangement, induces better perovskite crystallization, and enhances the charge extraction in the full solar cells. Consequently, the PT-modified inverted device delivers a champion PCE of 22.46%, which is superior to that of the control device (20.21%). More importantly, the PT-modified device retains 91.5% of its initial PCE after storage in air for 1600 h and over 85% of its initial PCE after heating at 85 °C for 800 h. This work provides a new perspective to simultaneously improve the performance and stability of PSCs to satisfy their commercial applications.</abstract><cop>United States</cop><pmid>38166358</pmid><doi>10.1021/acsami.3c16643</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6382-4256</orcidid><orcidid>https://orcid.org/0000-0002-0923-2321</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-01, Vol.16 (2), p.2408-2416
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_3c16643
source American Chemical Society Journals
title Improved Air Stability for High-Performance FACsPbI 3 Perovskite Solar Cells via Bonding Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Air%20Stability%20for%20High-Performance%20FACsPbI%203%20Perovskite%20Solar%20Cells%20via%20Bonding%20Engineering&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yu,%20Bo&rft.date=2024-01-17&rft.volume=16&rft.issue=2&rft.spage=2408&rft.epage=2416&rft.pages=2408-2416&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c16643&rft_dat=%3Cpubmed_cross%3E38166358%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38166358&rfr_iscdi=true