Mesoporous RE 0.5 Ce 0.5 O 2- x Fluorite Electrocatalysts for the Oxygen Evolution Reaction

Developing highly active and stable electrocatalysts for the oxygen evolution reaction (OER) is key to improving the efficiency and practical application of various sustainable energy technologies including water electrolysis, CO reduction, and metal air batteries. Here, we use evaporation-induced s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-02, Vol.16 (6), p.7014-7025
Hauptverfasser: Paladugu, Sreya, Abdullahi, Ibrahim Munkaila, Singh, Harish, Spinuzzi, Sam, Nath, Manashi, Page, Katharine
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7025
container_issue 6
container_start_page 7014
container_title ACS applied materials & interfaces
container_volume 16
creator Paladugu, Sreya
Abdullahi, Ibrahim Munkaila
Singh, Harish
Spinuzzi, Sam
Nath, Manashi
Page, Katharine
description Developing highly active and stable electrocatalysts for the oxygen evolution reaction (OER) is key to improving the efficiency and practical application of various sustainable energy technologies including water electrolysis, CO reduction, and metal air batteries. Here, we use evaporation-induced self-assembly (EISA) to synthesize highly porous fluorite nanocatalysts with a high surface area. In this study, we demonstrate that a 50% rare-earth cation substitution for Ce in the CeO fluorite lattice improves the OER activity and stability by introducing oxygen vacancies into the host lattice, which results in a decrease in the adsorption energy of the OH* intermediate in the OER. Among the binary fluorite compositions investigated, Nd Ce O is shown to display the lowest OER overpotential of 243 mV, achieved at a current density of 10 mA cm , and excellent cycling stability in an alkaline medium. Importantly, we demonstrate that rare-earth oxide OER electrocatalysts with high activity and stability can be achieved using the EISA synthesis route without the incorporation of transition and noble metals.
doi_str_mv 10.1021/acsami.3c14977
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_3c14977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38308595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1075-8ab4dbeb9a4d57d40e5e5ae462bb757e526c03f761fcf4191eb2e05c935bb1353</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EoqWwMiL_gQR_vTgZUZUCUlGlCiaGyHZeICitKztB7b-H0tLp3uGeOxxCbjlLORP83rhoVm0qHVeF1mdkzAulklyAOD91pUbkKsYvxjIpGFySkcwly6GAMXl_weg3Pvgh0mVJWQp0in-xoCKhWzrrBh_aHmnZoeuDd6Y33S72kTY-0P4T6WK7-8A1Lb99N_StX9MlGrcv1-SiMV3Em2NOyNusfJ0-JfPF4_P0YZ44zjQkubGqtmgLo2rQtWIICAZVJqzVoBFE5phsdMYb1yhecLQCGbhCgrVcgpyQ9PDrgo8xYFNtQrsyYVdxVu0tVQdL1dHSL3B3ADaDXWF9mv9rkT_UvWMv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mesoporous RE 0.5 Ce 0.5 O 2- x Fluorite Electrocatalysts for the Oxygen Evolution Reaction</title><source>American Chemical Society</source><creator>Paladugu, Sreya ; Abdullahi, Ibrahim Munkaila ; Singh, Harish ; Spinuzzi, Sam ; Nath, Manashi ; Page, Katharine</creator><creatorcontrib>Paladugu, Sreya ; Abdullahi, Ibrahim Munkaila ; Singh, Harish ; Spinuzzi, Sam ; Nath, Manashi ; Page, Katharine</creatorcontrib><description>Developing highly active and stable electrocatalysts for the oxygen evolution reaction (OER) is key to improving the efficiency and practical application of various sustainable energy technologies including water electrolysis, CO reduction, and metal air batteries. Here, we use evaporation-induced self-assembly (EISA) to synthesize highly porous fluorite nanocatalysts with a high surface area. In this study, we demonstrate that a 50% rare-earth cation substitution for Ce in the CeO fluorite lattice improves the OER activity and stability by introducing oxygen vacancies into the host lattice, which results in a decrease in the adsorption energy of the OH* intermediate in the OER. Among the binary fluorite compositions investigated, Nd Ce O is shown to display the lowest OER overpotential of 243 mV, achieved at a current density of 10 mA cm , and excellent cycling stability in an alkaline medium. Importantly, we demonstrate that rare-earth oxide OER electrocatalysts with high activity and stability can be achieved using the EISA synthesis route without the incorporation of transition and noble metals.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c14977</identifier><identifier>PMID: 38308595</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2024-02, Vol.16 (6), p.7014-7025</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1075-8ab4dbeb9a4d57d40e5e5ae462bb757e526c03f761fcf4191eb2e05c935bb1353</citedby><cites>FETCH-LOGICAL-c1075-8ab4dbeb9a4d57d40e5e5ae462bb757e526c03f761fcf4191eb2e05c935bb1353</cites><orcidid>0000-0002-9071-3383 ; 0000-0002-5058-5313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2756,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38308595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paladugu, Sreya</creatorcontrib><creatorcontrib>Abdullahi, Ibrahim Munkaila</creatorcontrib><creatorcontrib>Singh, Harish</creatorcontrib><creatorcontrib>Spinuzzi, Sam</creatorcontrib><creatorcontrib>Nath, Manashi</creatorcontrib><creatorcontrib>Page, Katharine</creatorcontrib><title>Mesoporous RE 0.5 Ce 0.5 O 2- x Fluorite Electrocatalysts for the Oxygen Evolution Reaction</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Developing highly active and stable electrocatalysts for the oxygen evolution reaction (OER) is key to improving the efficiency and practical application of various sustainable energy technologies including water electrolysis, CO reduction, and metal air batteries. Here, we use evaporation-induced self-assembly (EISA) to synthesize highly porous fluorite nanocatalysts with a high surface area. In this study, we demonstrate that a 50% rare-earth cation substitution for Ce in the CeO fluorite lattice improves the OER activity and stability by introducing oxygen vacancies into the host lattice, which results in a decrease in the adsorption energy of the OH* intermediate in the OER. Among the binary fluorite compositions investigated, Nd Ce O is shown to display the lowest OER overpotential of 243 mV, achieved at a current density of 10 mA cm , and excellent cycling stability in an alkaline medium. Importantly, we demonstrate that rare-earth oxide OER electrocatalysts with high activity and stability can be achieved using the EISA synthesis route without the incorporation of transition and noble metals.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAURS0EoqWwMiL_gQR_vTgZUZUCUlGlCiaGyHZeICitKztB7b-H0tLp3uGeOxxCbjlLORP83rhoVm0qHVeF1mdkzAulklyAOD91pUbkKsYvxjIpGFySkcwly6GAMXl_weg3Pvgh0mVJWQp0in-xoCKhWzrrBh_aHmnZoeuDd6Y33S72kTY-0P4T6WK7-8A1Lb99N_StX9MlGrcv1-SiMV3Em2NOyNusfJ0-JfPF4_P0YZ44zjQkubGqtmgLo2rQtWIICAZVJqzVoBFE5phsdMYb1yhecLQCGbhCgrVcgpyQ9PDrgo8xYFNtQrsyYVdxVu0tVQdL1dHSL3B3ADaDXWF9mv9rkT_UvWMv</recordid><startdate>20240214</startdate><enddate>20240214</enddate><creator>Paladugu, Sreya</creator><creator>Abdullahi, Ibrahim Munkaila</creator><creator>Singh, Harish</creator><creator>Spinuzzi, Sam</creator><creator>Nath, Manashi</creator><creator>Page, Katharine</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9071-3383</orcidid><orcidid>https://orcid.org/0000-0002-5058-5313</orcidid></search><sort><creationdate>20240214</creationdate><title>Mesoporous RE 0.5 Ce 0.5 O 2- x Fluorite Electrocatalysts for the Oxygen Evolution Reaction</title><author>Paladugu, Sreya ; Abdullahi, Ibrahim Munkaila ; Singh, Harish ; Spinuzzi, Sam ; Nath, Manashi ; Page, Katharine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1075-8ab4dbeb9a4d57d40e5e5ae462bb757e526c03f761fcf4191eb2e05c935bb1353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paladugu, Sreya</creatorcontrib><creatorcontrib>Abdullahi, Ibrahim Munkaila</creatorcontrib><creatorcontrib>Singh, Harish</creatorcontrib><creatorcontrib>Spinuzzi, Sam</creatorcontrib><creatorcontrib>Nath, Manashi</creatorcontrib><creatorcontrib>Page, Katharine</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paladugu, Sreya</au><au>Abdullahi, Ibrahim Munkaila</au><au>Singh, Harish</au><au>Spinuzzi, Sam</au><au>Nath, Manashi</au><au>Page, Katharine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous RE 0.5 Ce 0.5 O 2- x Fluorite Electrocatalysts for the Oxygen Evolution Reaction</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2024-02-14</date><risdate>2024</risdate><volume>16</volume><issue>6</issue><spage>7014</spage><epage>7025</epage><pages>7014-7025</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Developing highly active and stable electrocatalysts for the oxygen evolution reaction (OER) is key to improving the efficiency and practical application of various sustainable energy technologies including water electrolysis, CO reduction, and metal air batteries. Here, we use evaporation-induced self-assembly (EISA) to synthesize highly porous fluorite nanocatalysts with a high surface area. In this study, we demonstrate that a 50% rare-earth cation substitution for Ce in the CeO fluorite lattice improves the OER activity and stability by introducing oxygen vacancies into the host lattice, which results in a decrease in the adsorption energy of the OH* intermediate in the OER. Among the binary fluorite compositions investigated, Nd Ce O is shown to display the lowest OER overpotential of 243 mV, achieved at a current density of 10 mA cm , and excellent cycling stability in an alkaline medium. Importantly, we demonstrate that rare-earth oxide OER electrocatalysts with high activity and stability can be achieved using the EISA synthesis route without the incorporation of transition and noble metals.</abstract><cop>United States</cop><pmid>38308595</pmid><doi>10.1021/acsami.3c14977</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9071-3383</orcidid><orcidid>https://orcid.org/0000-0002-5058-5313</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-02, Vol.16 (6), p.7014-7025
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_3c14977
source American Chemical Society
title Mesoporous RE 0.5 Ce 0.5 O 2- x Fluorite Electrocatalysts for the Oxygen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20RE%200.5%20Ce%200.5%20O%202-%20x%20Fluorite%20Electrocatalysts%20for%20the%20Oxygen%20Evolution%20Reaction&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Paladugu,%20Sreya&rft.date=2024-02-14&rft.volume=16&rft.issue=6&rft.spage=7014&rft.epage=7025&rft.pages=7014-7025&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c14977&rft_dat=%3Cpubmed_cross%3E38308595%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38308595&rfr_iscdi=true