Killing Bacteria by Faradaic Processes through Nano-Hydroxyapatite/MoO x Platforms
Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-05, Vol.15 (21), p.25884-25897 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25897 |
---|---|
container_issue | 21 |
container_start_page | 25884 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Sieben, Juan M. Placente, Damián Baldini, Mónica D. Ruso, Juan M. Laiuppa, Juan A. Santillán, Graciela E. Messina, Paula V. |
description | Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding the antimicrobial effect of biocompatible nano-hydroxyapatite/MoO x (nano-HA/MoO x ) platforms on the basis of their electroactive behavior. Through cyclic voltammetry and chronoamperometry measurements, the electron transference capacity of nano-HA and nano-HA/MoO x electrodes was determined in the presence of pathogenic organisms: Pseudomonas aeruginosa and Staphylococcus aureus. Faradaic processes were confirmed and related to the switch of MoO4 2–/PO4 3– groups in the original hexagonal nano-HA crystal lattice and to the extent of OH vacancies that act as electron acceptors. Microscopic analysis of bacteria’s ultrastructure showed a disruptive effect on the cytoplasmic membrane upon direct contact with the materials, which is not evident in the presence of eukaryotic cells. Experiments support the existence of a type of extracellular electron transfer (EET) process that alters the function of the bacterial cytoplasmic membrane, accelerating their death. Our findings provide strong quantitative support for a drug-independent biocidal physical approach based on EET processes between microorganisms and phosphate ceramics that can be used to combat local orthopedic infections associated with implants. |
doi_str_mv | 10.1021/acsami.3c05064 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_3c05064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a551416822</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-6535f2c7b717332d5b174067244b5722f58027b1b73630edb4433499e269e92c3</originalsourceid><addsrcrecordid>eNp1kE1PwkAURSdGI4huXZpZmxTms9Mu1YgYUYjRdfNmOoWSliEzJaH_3poiO1fvLe65uTkI3VIypoTRCZgAdTnmhkgSizM0pKkQUcIkOz_9QgzQVQgbQmLOiLxEA64YSRKqhujzrayqcrvCj2Aa60vAusVT8JBDafDSO2NDsAE3a-_2qzX-gK2LZm3u3aGFHTRlYyfvboEPeFlBUzhfh2t0UUAV7M3xjtD39PnraRbNFy-vTw_zCBhTTRRLLgtmlFZUcc5yqakSJFbdXC0VY4VMCFOaasVjTmyuheBcpKllcWpTZvgIjfte410I3hbZzpc1-DajJPuVk_VysqOcDrjrgd1e1zY_xf9sdIH7PtCB2cbt_bbb_1_bDz2sbcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Killing Bacteria by Faradaic Processes through Nano-Hydroxyapatite/MoO x Platforms</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Sieben, Juan M. ; Placente, Damián ; Baldini, Mónica D. ; Ruso, Juan M. ; Laiuppa, Juan A. ; Santillán, Graciela E. ; Messina, Paula V.</creator><creatorcontrib>Sieben, Juan M. ; Placente, Damián ; Baldini, Mónica D. ; Ruso, Juan M. ; Laiuppa, Juan A. ; Santillán, Graciela E. ; Messina, Paula V.</creatorcontrib><description>Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding the antimicrobial effect of biocompatible nano-hydroxyapatite/MoO x (nano-HA/MoO x ) platforms on the basis of their electroactive behavior. Through cyclic voltammetry and chronoamperometry measurements, the electron transference capacity of nano-HA and nano-HA/MoO x electrodes was determined in the presence of pathogenic organisms: Pseudomonas aeruginosa and Staphylococcus aureus. Faradaic processes were confirmed and related to the switch of MoO4 2–/PO4 3– groups in the original hexagonal nano-HA crystal lattice and to the extent of OH vacancies that act as electron acceptors. Microscopic analysis of bacteria’s ultrastructure showed a disruptive effect on the cytoplasmic membrane upon direct contact with the materials, which is not evident in the presence of eukaryotic cells. Experiments support the existence of a type of extracellular electron transfer (EET) process that alters the function of the bacterial cytoplasmic membrane, accelerating their death. Our findings provide strong quantitative support for a drug-independent biocidal physical approach based on EET processes between microorganisms and phosphate ceramics that can be used to combat local orthopedic infections associated with implants.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c05064</identifier><identifier>PMID: 37208817</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Bacteria ; Bone and Bones ; Durapatite - chemistry ; Durapatite - pharmacology ; Functional Nanostructured Materials (including low-D carbon) ; Humans ; Staphylococcal Infections</subject><ispartof>ACS applied materials & interfaces, 2023-05, Vol.15 (21), p.25884-25897</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a227t-6535f2c7b717332d5b174067244b5722f58027b1b73630edb4433499e269e92c3</citedby><cites>FETCH-LOGICAL-a227t-6535f2c7b717332d5b174067244b5722f58027b1b73630edb4433499e269e92c3</cites><orcidid>0000-0001-7533-453X ; 0000-0001-5909-6754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c05064$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c05064$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37208817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sieben, Juan M.</creatorcontrib><creatorcontrib>Placente, Damián</creatorcontrib><creatorcontrib>Baldini, Mónica D.</creatorcontrib><creatorcontrib>Ruso, Juan M.</creatorcontrib><creatorcontrib>Laiuppa, Juan A.</creatorcontrib><creatorcontrib>Santillán, Graciela E.</creatorcontrib><creatorcontrib>Messina, Paula V.</creatorcontrib><title>Killing Bacteria by Faradaic Processes through Nano-Hydroxyapatite/MoO x Platforms</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding the antimicrobial effect of biocompatible nano-hydroxyapatite/MoO x (nano-HA/MoO x ) platforms on the basis of their electroactive behavior. Through cyclic voltammetry and chronoamperometry measurements, the electron transference capacity of nano-HA and nano-HA/MoO x electrodes was determined in the presence of pathogenic organisms: Pseudomonas aeruginosa and Staphylococcus aureus. Faradaic processes were confirmed and related to the switch of MoO4 2–/PO4 3– groups in the original hexagonal nano-HA crystal lattice and to the extent of OH vacancies that act as electron acceptors. Microscopic analysis of bacteria’s ultrastructure showed a disruptive effect on the cytoplasmic membrane upon direct contact with the materials, which is not evident in the presence of eukaryotic cells. Experiments support the existence of a type of extracellular electron transfer (EET) process that alters the function of the bacterial cytoplasmic membrane, accelerating their death. Our findings provide strong quantitative support for a drug-independent biocidal physical approach based on EET processes between microorganisms and phosphate ceramics that can be used to combat local orthopedic infections associated with implants.</description><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Bacteria</subject><subject>Bone and Bones</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - pharmacology</subject><subject>Functional Nanostructured Materials (including low-D carbon)</subject><subject>Humans</subject><subject>Staphylococcal Infections</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1PwkAURSdGI4huXZpZmxTms9Mu1YgYUYjRdfNmOoWSliEzJaH_3poiO1fvLe65uTkI3VIypoTRCZgAdTnmhkgSizM0pKkQUcIkOz_9QgzQVQgbQmLOiLxEA64YSRKqhujzrayqcrvCj2Aa60vAusVT8JBDafDSO2NDsAE3a-_2qzX-gK2LZm3u3aGFHTRlYyfvboEPeFlBUzhfh2t0UUAV7M3xjtD39PnraRbNFy-vTw_zCBhTTRRLLgtmlFZUcc5yqakSJFbdXC0VY4VMCFOaasVjTmyuheBcpKllcWpTZvgIjfte410I3hbZzpc1-DajJPuVk_VysqOcDrjrgd1e1zY_xf9sdIH7PtCB2cbt_bbb_1_bDz2sbcg</recordid><startdate>20230531</startdate><enddate>20230531</enddate><creator>Sieben, Juan M.</creator><creator>Placente, Damián</creator><creator>Baldini, Mónica D.</creator><creator>Ruso, Juan M.</creator><creator>Laiuppa, Juan A.</creator><creator>Santillán, Graciela E.</creator><creator>Messina, Paula V.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7533-453X</orcidid><orcidid>https://orcid.org/0000-0001-5909-6754</orcidid></search><sort><creationdate>20230531</creationdate><title>Killing Bacteria by Faradaic Processes through Nano-Hydroxyapatite/MoO x Platforms</title><author>Sieben, Juan M. ; Placente, Damián ; Baldini, Mónica D. ; Ruso, Juan M. ; Laiuppa, Juan A. ; Santillán, Graciela E. ; Messina, Paula V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-6535f2c7b717332d5b174067244b5722f58027b1b73630edb4433499e269e92c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Bacteria</topic><topic>Bone and Bones</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - pharmacology</topic><topic>Functional Nanostructured Materials (including low-D carbon)</topic><topic>Humans</topic><topic>Staphylococcal Infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sieben, Juan M.</creatorcontrib><creatorcontrib>Placente, Damián</creatorcontrib><creatorcontrib>Baldini, Mónica D.</creatorcontrib><creatorcontrib>Ruso, Juan M.</creatorcontrib><creatorcontrib>Laiuppa, Juan A.</creatorcontrib><creatorcontrib>Santillán, Graciela E.</creatorcontrib><creatorcontrib>Messina, Paula V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sieben, Juan M.</au><au>Placente, Damián</au><au>Baldini, Mónica D.</au><au>Ruso, Juan M.</au><au>Laiuppa, Juan A.</au><au>Santillán, Graciela E.</au><au>Messina, Paula V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Killing Bacteria by Faradaic Processes through Nano-Hydroxyapatite/MoO x Platforms</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-05-31</date><risdate>2023</risdate><volume>15</volume><issue>21</issue><spage>25884</spage><epage>25897</epage><pages>25884-25897</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding the antimicrobial effect of biocompatible nano-hydroxyapatite/MoO x (nano-HA/MoO x ) platforms on the basis of their electroactive behavior. Through cyclic voltammetry and chronoamperometry measurements, the electron transference capacity of nano-HA and nano-HA/MoO x electrodes was determined in the presence of pathogenic organisms: Pseudomonas aeruginosa and Staphylococcus aureus. Faradaic processes were confirmed and related to the switch of MoO4 2–/PO4 3– groups in the original hexagonal nano-HA crystal lattice and to the extent of OH vacancies that act as electron acceptors. Microscopic analysis of bacteria’s ultrastructure showed a disruptive effect on the cytoplasmic membrane upon direct contact with the materials, which is not evident in the presence of eukaryotic cells. Experiments support the existence of a type of extracellular electron transfer (EET) process that alters the function of the bacterial cytoplasmic membrane, accelerating their death. Our findings provide strong quantitative support for a drug-independent biocidal physical approach based on EET processes between microorganisms and phosphate ceramics that can be used to combat local orthopedic infections associated with implants.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37208817</pmid><doi>10.1021/acsami.3c05064</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7533-453X</orcidid><orcidid>https://orcid.org/0000-0001-5909-6754</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-05, Vol.15 (21), p.25884-25897 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_3c05064 |
source | MEDLINE; American Chemical Society Journals |
subjects | Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Bacteria Bone and Bones Durapatite - chemistry Durapatite - pharmacology Functional Nanostructured Materials (including low-D carbon) Humans Staphylococcal Infections |
title | Killing Bacteria by Faradaic Processes through Nano-Hydroxyapatite/MoO x Platforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Killing%20Bacteria%20by%20Faradaic%20Processes%20through%20Nano-Hydroxyapatite/MoO%20x%20Platforms&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Sieben,%20Juan%20M.&rft.date=2023-05-31&rft.volume=15&rft.issue=21&rft.spage=25884&rft.epage=25897&rft.pages=25884-25897&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c05064&rft_dat=%3Cacs_cross%3Ea551416822%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37208817&rfr_iscdi=true |