Killing Bacteria by Faradaic Processes through Nano-Hydroxyapatite/MoO x Platforms

Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-05, Vol.15 (21), p.25884-25897
Hauptverfasser: Sieben, Juan M., Placente, Damián, Baldini, Mónica D., Ruso, Juan M., Laiuppa, Juan A., Santillán, Graciela E., Messina, Paula V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25897
container_issue 21
container_start_page 25884
container_title ACS applied materials & interfaces
container_volume 15
creator Sieben, Juan M.
Placente, Damián
Baldini, Mónica D.
Ruso, Juan M.
Laiuppa, Juan A.
Santillán, Graciela E.
Messina, Paula V.
description Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding the antimicrobial effect of biocompatible nano-hydroxyapatite/MoO x (nano-HA/MoO x ) platforms on the basis of their electroactive behavior. Through cyclic voltammetry and chronoamperometry measurements, the electron transference capacity of nano-HA and nano-HA/MoO x electrodes was determined in the presence of pathogenic organisms: Pseudomonas aeruginosa and Staphylococcus aureus. Faradaic processes were confirmed and related to the switch of MoO4 2–/PO4 3– groups in the original hexagonal nano-HA crystal lattice and to the extent of OH vacancies that act as electron acceptors. Microscopic analysis of bacteria’s ultrastructure showed a disruptive effect on the cytoplasmic membrane upon direct contact with the materials, which is not evident in the presence of eukaryotic cells. Experiments support the existence of a type of extracellular electron transfer (EET) process that alters the function of the bacterial cytoplasmic membrane, accelerating their death. Our findings provide strong quantitative support for a drug-independent biocidal physical approach based on EET processes between microorganisms and phosphate ceramics that can be used to combat local orthopedic infections associated with implants.
doi_str_mv 10.1021/acsami.3c05064
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_3c05064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a551416822</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-6535f2c7b717332d5b174067244b5722f58027b1b73630edb4433499e269e92c3</originalsourceid><addsrcrecordid>eNp1kE1PwkAURSdGI4huXZpZmxTms9Mu1YgYUYjRdfNmOoWSliEzJaH_3poiO1fvLe65uTkI3VIypoTRCZgAdTnmhkgSizM0pKkQUcIkOz_9QgzQVQgbQmLOiLxEA64YSRKqhujzrayqcrvCj2Aa60vAusVT8JBDafDSO2NDsAE3a-_2qzX-gK2LZm3u3aGFHTRlYyfvboEPeFlBUzhfh2t0UUAV7M3xjtD39PnraRbNFy-vTw_zCBhTTRRLLgtmlFZUcc5yqakSJFbdXC0VY4VMCFOaasVjTmyuheBcpKllcWpTZvgIjfte410I3hbZzpc1-DajJPuVk_VysqOcDrjrgd1e1zY_xf9sdIH7PtCB2cbt_bbb_1_bDz2sbcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Killing Bacteria by Faradaic Processes through Nano-Hydroxyapatite/MoO x Platforms</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Sieben, Juan M. ; Placente, Damián ; Baldini, Mónica D. ; Ruso, Juan M. ; Laiuppa, Juan A. ; Santillán, Graciela E. ; Messina, Paula V.</creator><creatorcontrib>Sieben, Juan M. ; Placente, Damián ; Baldini, Mónica D. ; Ruso, Juan M. ; Laiuppa, Juan A. ; Santillán, Graciela E. ; Messina, Paula V.</creatorcontrib><description>Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding the antimicrobial effect of biocompatible nano-hydroxyapatite/MoO x (nano-HA/MoO x ) platforms on the basis of their electroactive behavior. Through cyclic voltammetry and chronoamperometry measurements, the electron transference capacity of nano-HA and nano-HA/MoO x electrodes was determined in the presence of pathogenic organisms: Pseudomonas aeruginosa and Staphylococcus aureus. Faradaic processes were confirmed and related to the switch of MoO4 2–/PO4 3– groups in the original hexagonal nano-HA crystal lattice and to the extent of OH vacancies that act as electron acceptors. Microscopic analysis of bacteria’s ultrastructure showed a disruptive effect on the cytoplasmic membrane upon direct contact with the materials, which is not evident in the presence of eukaryotic cells. Experiments support the existence of a type of extracellular electron transfer (EET) process that alters the function of the bacterial cytoplasmic membrane, accelerating their death. Our findings provide strong quantitative support for a drug-independent biocidal physical approach based on EET processes between microorganisms and phosphate ceramics that can be used to combat local orthopedic infections associated with implants.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c05064</identifier><identifier>PMID: 37208817</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Bacteria ; Bone and Bones ; Durapatite - chemistry ; Durapatite - pharmacology ; Functional Nanostructured Materials (including low-D carbon) ; Humans ; Staphylococcal Infections</subject><ispartof>ACS applied materials &amp; interfaces, 2023-05, Vol.15 (21), p.25884-25897</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a227t-6535f2c7b717332d5b174067244b5722f58027b1b73630edb4433499e269e92c3</citedby><cites>FETCH-LOGICAL-a227t-6535f2c7b717332d5b174067244b5722f58027b1b73630edb4433499e269e92c3</cites><orcidid>0000-0001-7533-453X ; 0000-0001-5909-6754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c05064$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c05064$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37208817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sieben, Juan M.</creatorcontrib><creatorcontrib>Placente, Damián</creatorcontrib><creatorcontrib>Baldini, Mónica D.</creatorcontrib><creatorcontrib>Ruso, Juan M.</creatorcontrib><creatorcontrib>Laiuppa, Juan A.</creatorcontrib><creatorcontrib>Santillán, Graciela E.</creatorcontrib><creatorcontrib>Messina, Paula V.</creatorcontrib><title>Killing Bacteria by Faradaic Processes through Nano-Hydroxyapatite/MoO x Platforms</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding the antimicrobial effect of biocompatible nano-hydroxyapatite/MoO x (nano-HA/MoO x ) platforms on the basis of their electroactive behavior. Through cyclic voltammetry and chronoamperometry measurements, the electron transference capacity of nano-HA and nano-HA/MoO x electrodes was determined in the presence of pathogenic organisms: Pseudomonas aeruginosa and Staphylococcus aureus. Faradaic processes were confirmed and related to the switch of MoO4 2–/PO4 3– groups in the original hexagonal nano-HA crystal lattice and to the extent of OH vacancies that act as electron acceptors. Microscopic analysis of bacteria’s ultrastructure showed a disruptive effect on the cytoplasmic membrane upon direct contact with the materials, which is not evident in the presence of eukaryotic cells. Experiments support the existence of a type of extracellular electron transfer (EET) process that alters the function of the bacterial cytoplasmic membrane, accelerating their death. Our findings provide strong quantitative support for a drug-independent biocidal physical approach based on EET processes between microorganisms and phosphate ceramics that can be used to combat local orthopedic infections associated with implants.</description><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Bacteria</subject><subject>Bone and Bones</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - pharmacology</subject><subject>Functional Nanostructured Materials (including low-D carbon)</subject><subject>Humans</subject><subject>Staphylococcal Infections</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1PwkAURSdGI4huXZpZmxTms9Mu1YgYUYjRdfNmOoWSliEzJaH_3poiO1fvLe65uTkI3VIypoTRCZgAdTnmhkgSizM0pKkQUcIkOz_9QgzQVQgbQmLOiLxEA64YSRKqhujzrayqcrvCj2Aa60vAusVT8JBDafDSO2NDsAE3a-_2qzX-gK2LZm3u3aGFHTRlYyfvboEPeFlBUzhfh2t0UUAV7M3xjtD39PnraRbNFy-vTw_zCBhTTRRLLgtmlFZUcc5yqakSJFbdXC0VY4VMCFOaasVjTmyuheBcpKllcWpTZvgIjfte410I3hbZzpc1-DajJPuVk_VysqOcDrjrgd1e1zY_xf9sdIH7PtCB2cbt_bbb_1_bDz2sbcg</recordid><startdate>20230531</startdate><enddate>20230531</enddate><creator>Sieben, Juan M.</creator><creator>Placente, Damián</creator><creator>Baldini, Mónica D.</creator><creator>Ruso, Juan M.</creator><creator>Laiuppa, Juan A.</creator><creator>Santillán, Graciela E.</creator><creator>Messina, Paula V.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7533-453X</orcidid><orcidid>https://orcid.org/0000-0001-5909-6754</orcidid></search><sort><creationdate>20230531</creationdate><title>Killing Bacteria by Faradaic Processes through Nano-Hydroxyapatite/MoO x Platforms</title><author>Sieben, Juan M. ; Placente, Damián ; Baldini, Mónica D. ; Ruso, Juan M. ; Laiuppa, Juan A. ; Santillán, Graciela E. ; Messina, Paula V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-6535f2c7b717332d5b174067244b5722f58027b1b73630edb4433499e269e92c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Bacteria</topic><topic>Bone and Bones</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - pharmacology</topic><topic>Functional Nanostructured Materials (including low-D carbon)</topic><topic>Humans</topic><topic>Staphylococcal Infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sieben, Juan M.</creatorcontrib><creatorcontrib>Placente, Damián</creatorcontrib><creatorcontrib>Baldini, Mónica D.</creatorcontrib><creatorcontrib>Ruso, Juan M.</creatorcontrib><creatorcontrib>Laiuppa, Juan A.</creatorcontrib><creatorcontrib>Santillán, Graciela E.</creatorcontrib><creatorcontrib>Messina, Paula V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sieben, Juan M.</au><au>Placente, Damián</au><au>Baldini, Mónica D.</au><au>Ruso, Juan M.</au><au>Laiuppa, Juan A.</au><au>Santillán, Graciela E.</au><au>Messina, Paula V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Killing Bacteria by Faradaic Processes through Nano-Hydroxyapatite/MoO x Platforms</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-05-31</date><risdate>2023</risdate><volume>15</volume><issue>21</issue><spage>25884</spage><epage>25897</epage><pages>25884-25897</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding the antimicrobial effect of biocompatible nano-hydroxyapatite/MoO x (nano-HA/MoO x ) platforms on the basis of their electroactive behavior. Through cyclic voltammetry and chronoamperometry measurements, the electron transference capacity of nano-HA and nano-HA/MoO x electrodes was determined in the presence of pathogenic organisms: Pseudomonas aeruginosa and Staphylococcus aureus. Faradaic processes were confirmed and related to the switch of MoO4 2–/PO4 3– groups in the original hexagonal nano-HA crystal lattice and to the extent of OH vacancies that act as electron acceptors. Microscopic analysis of bacteria’s ultrastructure showed a disruptive effect on the cytoplasmic membrane upon direct contact with the materials, which is not evident in the presence of eukaryotic cells. Experiments support the existence of a type of extracellular electron transfer (EET) process that alters the function of the bacterial cytoplasmic membrane, accelerating their death. Our findings provide strong quantitative support for a drug-independent biocidal physical approach based on EET processes between microorganisms and phosphate ceramics that can be used to combat local orthopedic infections associated with implants.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37208817</pmid><doi>10.1021/acsami.3c05064</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7533-453X</orcidid><orcidid>https://orcid.org/0000-0001-5909-6754</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-05, Vol.15 (21), p.25884-25897
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_3c05064
source MEDLINE; American Chemical Society Journals
subjects Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Bacteria
Bone and Bones
Durapatite - chemistry
Durapatite - pharmacology
Functional Nanostructured Materials (including low-D carbon)
Humans
Staphylococcal Infections
title Killing Bacteria by Faradaic Processes through Nano-Hydroxyapatite/MoO x Platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Killing%20Bacteria%20by%20Faradaic%20Processes%20through%20Nano-Hydroxyapatite/MoO%20x%20Platforms&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Sieben,%20Juan%20M.&rft.date=2023-05-31&rft.volume=15&rft.issue=21&rft.spage=25884&rft.epage=25897&rft.pages=25884-25897&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c05064&rft_dat=%3Cacs_cross%3Ea551416822%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37208817&rfr_iscdi=true