Understanding the Influence of Li 7 La 3 Zr 2 O 12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes

Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-05, Vol.15 (21), p.26047-26059
Hauptverfasser: Counihan, Michael J, Powers, Devon J, Barai, Pallab, Hu, Shiyu, Zagorac, Teodora, Zhou, Yundong, Lee, Jungkuk, Connell, Justin G, Chavan, Kanchan S, Gilmore, Ian S, Hanley, Luke, Srinivasan, Venkat, Zhang, Yuepeng, Tepavcevic, Sanja
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26059
container_issue 21
container_start_page 26047
container_title ACS applied materials & interfaces
container_volume 15
creator Counihan, Michael J
Powers, Devon J
Barai, Pallab
Hu, Shiyu
Zagorac, Teodora
Zhou, Yundong
Lee, Jungkuk
Connell, Justin G
Chavan, Kanchan S
Gilmore, Ian S
Hanley, Luke
Srinivasan, Venkat
Zhang, Yuepeng
Tepavcevic, Sanja
description Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite formation and propagation. Not only does this lower the critical current density (CCD) before cell shorting, but the uncontrolled growth of lithium deposits may limit Coulombic efficiency (CE) by creating dead lithium. Here, we present a fundamental study on how the ceramic components of CPEs influence these characteristics. CPE membranes based on poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) with Li La Zr O (LLZO) nanofibers were fabricated with industrially relevant roll-to-roll manufacturing techniques. Galvanostatic cycling with lithium symmetric cells shows that the CCD can be tripled by including 50 wt % LLZO, but half-cell cycling reveals that this comes at the cost of CE. Varying the LLZO loading shows that even a small amount of LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77% at just 2 wt % LLZO. Mesoscale modeling reveals that the increase in CCD cannot be explained by an increase in the macroscopic or microscopic stiffness of the electrolyte; only the microstructure of the LLZO nanofibers in the PEO-LiTFSI matrix slows dendrite growth by presenting physical barriers that the dendrites must push or grow around. This tortuous lithium growth mechanism around the LLZO is corroborated with mass spectrometry imaging. This work highlights important elements to consider in the design of CPEs for high-efficiency lithium metal batteries.
doi_str_mv 10.1021/acsami.3c04262
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_3c04262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37204772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1072-da883b239d929be2bb86de1a3956423b274ed88f651acedfb5a7816b674cad373</originalsourceid><addsrcrecordid>eNo9kLtO7DAQhi0E4t6eEs0L7OJb4qREYQ8grYACGprIlzH4KLFXdrbY9-CBydEC1cxo_u8vPkL-MLpklLNrbYsew1JYKnnND8gpa6VcNLzih7-7lCfkrJR_lNaC0-qYnAjFqVSKn5LP1-gwl0lHF-I7TB8ID9EPW4wWIXlYB1Cw1iDgLQOHJ2AcHnVMPpgZgxShy2EKVg_QbXPGOMEtxhKmHcyV0KXtkEYTLKy8DzbMtTsIM5TGTZpTCM9p2I2YYTWgnfJ8TFguyJHXQ8HL73lOXv-uXrr7xfrp7qG7WS8so4ovnG4aYbhoXctbg9yYpnbItGirWvL5oyS6pvF1xbRF502lVcNqUytptRNKnJPlvtfmVEpG329yGHXe9Yz2__X2e739t94ZuNoDm60Z0f3Gf3yKL77teBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding the Influence of Li 7 La 3 Zr 2 O 12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes</title><source>American Chemical Society Journals</source><creator>Counihan, Michael J ; Powers, Devon J ; Barai, Pallab ; Hu, Shiyu ; Zagorac, Teodora ; Zhou, Yundong ; Lee, Jungkuk ; Connell, Justin G ; Chavan, Kanchan S ; Gilmore, Ian S ; Hanley, Luke ; Srinivasan, Venkat ; Zhang, Yuepeng ; Tepavcevic, Sanja</creator><creatorcontrib>Counihan, Michael J ; Powers, Devon J ; Barai, Pallab ; Hu, Shiyu ; Zagorac, Teodora ; Zhou, Yundong ; Lee, Jungkuk ; Connell, Justin G ; Chavan, Kanchan S ; Gilmore, Ian S ; Hanley, Luke ; Srinivasan, Venkat ; Zhang, Yuepeng ; Tepavcevic, Sanja</creatorcontrib><description>Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite formation and propagation. Not only does this lower the critical current density (CCD) before cell shorting, but the uncontrolled growth of lithium deposits may limit Coulombic efficiency (CE) by creating dead lithium. Here, we present a fundamental study on how the ceramic components of CPEs influence these characteristics. CPE membranes based on poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) with Li La Zr O (LLZO) nanofibers were fabricated with industrially relevant roll-to-roll manufacturing techniques. Galvanostatic cycling with lithium symmetric cells shows that the CCD can be tripled by including 50 wt % LLZO, but half-cell cycling reveals that this comes at the cost of CE. Varying the LLZO loading shows that even a small amount of LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77% at just 2 wt % LLZO. Mesoscale modeling reveals that the increase in CCD cannot be explained by an increase in the macroscopic or microscopic stiffness of the electrolyte; only the microstructure of the LLZO nanofibers in the PEO-LiTFSI matrix slows dendrite growth by presenting physical barriers that the dendrites must push or grow around. This tortuous lithium growth mechanism around the LLZO is corroborated with mass spectrometry imaging. This work highlights important elements to consider in the design of CPEs for high-efficiency lithium metal batteries.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c04262</identifier><identifier>PMID: 37204772</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2023-05, Vol.15 (21), p.26047-26059</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1072-da883b239d929be2bb86de1a3956423b274ed88f651acedfb5a7816b674cad373</citedby><cites>FETCH-LOGICAL-c1072-da883b239d929be2bb86de1a3956423b274ed88f651acedfb5a7816b674cad373</cites><orcidid>0000-0003-2217-6392 ; 0000-0002-1248-5952 ; 0000-0002-0981-2318 ; 0000-0001-7856-1869 ; 0000-0002-2979-2131 ; 0000-0003-0151-8832 ; 0000-0003-4535-573X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37204772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Counihan, Michael J</creatorcontrib><creatorcontrib>Powers, Devon J</creatorcontrib><creatorcontrib>Barai, Pallab</creatorcontrib><creatorcontrib>Hu, Shiyu</creatorcontrib><creatorcontrib>Zagorac, Teodora</creatorcontrib><creatorcontrib>Zhou, Yundong</creatorcontrib><creatorcontrib>Lee, Jungkuk</creatorcontrib><creatorcontrib>Connell, Justin G</creatorcontrib><creatorcontrib>Chavan, Kanchan S</creatorcontrib><creatorcontrib>Gilmore, Ian S</creatorcontrib><creatorcontrib>Hanley, Luke</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Zhang, Yuepeng</creatorcontrib><creatorcontrib>Tepavcevic, Sanja</creatorcontrib><title>Understanding the Influence of Li 7 La 3 Zr 2 O 12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite formation and propagation. Not only does this lower the critical current density (CCD) before cell shorting, but the uncontrolled growth of lithium deposits may limit Coulombic efficiency (CE) by creating dead lithium. Here, we present a fundamental study on how the ceramic components of CPEs influence these characteristics. CPE membranes based on poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) with Li La Zr O (LLZO) nanofibers were fabricated with industrially relevant roll-to-roll manufacturing techniques. Galvanostatic cycling with lithium symmetric cells shows that the CCD can be tripled by including 50 wt % LLZO, but half-cell cycling reveals that this comes at the cost of CE. Varying the LLZO loading shows that even a small amount of LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77% at just 2 wt % LLZO. Mesoscale modeling reveals that the increase in CCD cannot be explained by an increase in the macroscopic or microscopic stiffness of the electrolyte; only the microstructure of the LLZO nanofibers in the PEO-LiTFSI matrix slows dendrite growth by presenting physical barriers that the dendrites must push or grow around. This tortuous lithium growth mechanism around the LLZO is corroborated with mass spectrometry imaging. This work highlights important elements to consider in the design of CPEs for high-efficiency lithium metal batteries.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kLtO7DAQhi0E4t6eEs0L7OJb4qREYQ8grYACGprIlzH4KLFXdrbY9-CBydEC1cxo_u8vPkL-MLpklLNrbYsew1JYKnnND8gpa6VcNLzih7-7lCfkrJR_lNaC0-qYnAjFqVSKn5LP1-gwl0lHF-I7TB8ID9EPW4wWIXlYB1Cw1iDgLQOHJ2AcHnVMPpgZgxShy2EKVg_QbXPGOMEtxhKmHcyV0KXtkEYTLKy8DzbMtTsIM5TGTZpTCM9p2I2YYTWgnfJ8TFguyJHXQ8HL73lOXv-uXrr7xfrp7qG7WS8so4ovnG4aYbhoXctbg9yYpnbItGirWvL5oyS6pvF1xbRF502lVcNqUytptRNKnJPlvtfmVEpG329yGHXe9Yz2__X2e739t94ZuNoDm60Z0f3Gf3yKL77teBY</recordid><startdate>20230531</startdate><enddate>20230531</enddate><creator>Counihan, Michael J</creator><creator>Powers, Devon J</creator><creator>Barai, Pallab</creator><creator>Hu, Shiyu</creator><creator>Zagorac, Teodora</creator><creator>Zhou, Yundong</creator><creator>Lee, Jungkuk</creator><creator>Connell, Justin G</creator><creator>Chavan, Kanchan S</creator><creator>Gilmore, Ian S</creator><creator>Hanley, Luke</creator><creator>Srinivasan, Venkat</creator><creator>Zhang, Yuepeng</creator><creator>Tepavcevic, Sanja</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2217-6392</orcidid><orcidid>https://orcid.org/0000-0002-1248-5952</orcidid><orcidid>https://orcid.org/0000-0002-0981-2318</orcidid><orcidid>https://orcid.org/0000-0001-7856-1869</orcidid><orcidid>https://orcid.org/0000-0002-2979-2131</orcidid><orcidid>https://orcid.org/0000-0003-0151-8832</orcidid><orcidid>https://orcid.org/0000-0003-4535-573X</orcidid></search><sort><creationdate>20230531</creationdate><title>Understanding the Influence of Li 7 La 3 Zr 2 O 12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes</title><author>Counihan, Michael J ; Powers, Devon J ; Barai, Pallab ; Hu, Shiyu ; Zagorac, Teodora ; Zhou, Yundong ; Lee, Jungkuk ; Connell, Justin G ; Chavan, Kanchan S ; Gilmore, Ian S ; Hanley, Luke ; Srinivasan, Venkat ; Zhang, Yuepeng ; Tepavcevic, Sanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1072-da883b239d929be2bb86de1a3956423b274ed88f651acedfb5a7816b674cad373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Counihan, Michael J</creatorcontrib><creatorcontrib>Powers, Devon J</creatorcontrib><creatorcontrib>Barai, Pallab</creatorcontrib><creatorcontrib>Hu, Shiyu</creatorcontrib><creatorcontrib>Zagorac, Teodora</creatorcontrib><creatorcontrib>Zhou, Yundong</creatorcontrib><creatorcontrib>Lee, Jungkuk</creatorcontrib><creatorcontrib>Connell, Justin G</creatorcontrib><creatorcontrib>Chavan, Kanchan S</creatorcontrib><creatorcontrib>Gilmore, Ian S</creatorcontrib><creatorcontrib>Hanley, Luke</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Zhang, Yuepeng</creatorcontrib><creatorcontrib>Tepavcevic, Sanja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Counihan, Michael J</au><au>Powers, Devon J</au><au>Barai, Pallab</au><au>Hu, Shiyu</au><au>Zagorac, Teodora</au><au>Zhou, Yundong</au><au>Lee, Jungkuk</au><au>Connell, Justin G</au><au>Chavan, Kanchan S</au><au>Gilmore, Ian S</au><au>Hanley, Luke</au><au>Srinivasan, Venkat</au><au>Zhang, Yuepeng</au><au>Tepavcevic, Sanja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Influence of Li 7 La 3 Zr 2 O 12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2023-05-31</date><risdate>2023</risdate><volume>15</volume><issue>21</issue><spage>26047</spage><epage>26059</epage><pages>26047-26059</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite formation and propagation. Not only does this lower the critical current density (CCD) before cell shorting, but the uncontrolled growth of lithium deposits may limit Coulombic efficiency (CE) by creating dead lithium. Here, we present a fundamental study on how the ceramic components of CPEs influence these characteristics. CPE membranes based on poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) with Li La Zr O (LLZO) nanofibers were fabricated with industrially relevant roll-to-roll manufacturing techniques. Galvanostatic cycling with lithium symmetric cells shows that the CCD can be tripled by including 50 wt % LLZO, but half-cell cycling reveals that this comes at the cost of CE. Varying the LLZO loading shows that even a small amount of LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77% at just 2 wt % LLZO. Mesoscale modeling reveals that the increase in CCD cannot be explained by an increase in the macroscopic or microscopic stiffness of the electrolyte; only the microstructure of the LLZO nanofibers in the PEO-LiTFSI matrix slows dendrite growth by presenting physical barriers that the dendrites must push or grow around. This tortuous lithium growth mechanism around the LLZO is corroborated with mass spectrometry imaging. This work highlights important elements to consider in the design of CPEs for high-efficiency lithium metal batteries.</abstract><cop>United States</cop><pmid>37204772</pmid><doi>10.1021/acsami.3c04262</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2217-6392</orcidid><orcidid>https://orcid.org/0000-0002-1248-5952</orcidid><orcidid>https://orcid.org/0000-0002-0981-2318</orcidid><orcidid>https://orcid.org/0000-0001-7856-1869</orcidid><orcidid>https://orcid.org/0000-0002-2979-2131</orcidid><orcidid>https://orcid.org/0000-0003-0151-8832</orcidid><orcidid>https://orcid.org/0000-0003-4535-573X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-05, Vol.15 (21), p.26047-26059
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_3c04262
source American Chemical Society Journals
title Understanding the Influence of Li 7 La 3 Zr 2 O 12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Influence%20of%20Li%207%20La%203%20Zr%202%20O%2012%20Nanofibers%20on%20Critical%20Current%20Density%20and%20Coulombic%20Efficiency%20in%20Composite%20Polymer%20Electrolytes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Counihan,%20Michael%20J&rft.date=2023-05-31&rft.volume=15&rft.issue=21&rft.spage=26047&rft.epage=26059&rft.pages=26047-26059&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c04262&rft_dat=%3Cpubmed_cross%3E37204772%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37204772&rfr_iscdi=true