Understanding the Influence of Li 7 La 3 Zr 2 O 12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes
Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite form...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-05, Vol.15 (21), p.26047-26059 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26059 |
---|---|
container_issue | 21 |
container_start_page | 26047 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Counihan, Michael J Powers, Devon J Barai, Pallab Hu, Shiyu Zagorac, Teodora Zhou, Yundong Lee, Jungkuk Connell, Justin G Chavan, Kanchan S Gilmore, Ian S Hanley, Luke Srinivasan, Venkat Zhang, Yuepeng Tepavcevic, Sanja |
description | Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite formation and propagation. Not only does this lower the critical current density (CCD) before cell shorting, but the uncontrolled growth of lithium deposits may limit Coulombic efficiency (CE) by creating dead lithium. Here, we present a fundamental study on how the ceramic components of CPEs influence these characteristics. CPE membranes based on poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) with Li
La
Zr
O
(LLZO) nanofibers were fabricated with industrially relevant roll-to-roll manufacturing techniques. Galvanostatic cycling with lithium symmetric cells shows that the CCD can be tripled by including 50 wt % LLZO, but half-cell cycling reveals that this comes at the cost of CE. Varying the LLZO loading shows that even a small amount of LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77% at just 2 wt % LLZO. Mesoscale modeling reveals that the increase in CCD cannot be explained by an increase in the macroscopic or microscopic stiffness of the electrolyte; only the microstructure of the LLZO nanofibers in the PEO-LiTFSI matrix slows dendrite growth by presenting physical barriers that the dendrites must push or grow around. This tortuous lithium growth mechanism around the LLZO is corroborated with mass spectrometry imaging. This work highlights important elements to consider in the design of CPEs for high-efficiency lithium metal batteries. |
doi_str_mv | 10.1021/acsami.3c04262 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_3c04262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37204772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1072-da883b239d929be2bb86de1a3956423b274ed88f651acedfb5a7816b674cad373</originalsourceid><addsrcrecordid>eNo9kLtO7DAQhi0E4t6eEs0L7OJb4qREYQ8grYACGprIlzH4KLFXdrbY9-CBydEC1cxo_u8vPkL-MLpklLNrbYsew1JYKnnND8gpa6VcNLzih7-7lCfkrJR_lNaC0-qYnAjFqVSKn5LP1-gwl0lHF-I7TB8ID9EPW4wWIXlYB1Cw1iDgLQOHJ2AcHnVMPpgZgxShy2EKVg_QbXPGOMEtxhKmHcyV0KXtkEYTLKy8DzbMtTsIM5TGTZpTCM9p2I2YYTWgnfJ8TFguyJHXQ8HL73lOXv-uXrr7xfrp7qG7WS8so4ovnG4aYbhoXctbg9yYpnbItGirWvL5oyS6pvF1xbRF502lVcNqUytptRNKnJPlvtfmVEpG329yGHXe9Yz2__X2e739t94ZuNoDm60Z0f3Gf3yKL77teBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding the Influence of Li 7 La 3 Zr 2 O 12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes</title><source>American Chemical Society Journals</source><creator>Counihan, Michael J ; Powers, Devon J ; Barai, Pallab ; Hu, Shiyu ; Zagorac, Teodora ; Zhou, Yundong ; Lee, Jungkuk ; Connell, Justin G ; Chavan, Kanchan S ; Gilmore, Ian S ; Hanley, Luke ; Srinivasan, Venkat ; Zhang, Yuepeng ; Tepavcevic, Sanja</creator><creatorcontrib>Counihan, Michael J ; Powers, Devon J ; Barai, Pallab ; Hu, Shiyu ; Zagorac, Teodora ; Zhou, Yundong ; Lee, Jungkuk ; Connell, Justin G ; Chavan, Kanchan S ; Gilmore, Ian S ; Hanley, Luke ; Srinivasan, Venkat ; Zhang, Yuepeng ; Tepavcevic, Sanja</creatorcontrib><description>Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite formation and propagation. Not only does this lower the critical current density (CCD) before cell shorting, but the uncontrolled growth of lithium deposits may limit Coulombic efficiency (CE) by creating dead lithium. Here, we present a fundamental study on how the ceramic components of CPEs influence these characteristics. CPE membranes based on poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) with Li
La
Zr
O
(LLZO) nanofibers were fabricated with industrially relevant roll-to-roll manufacturing techniques. Galvanostatic cycling with lithium symmetric cells shows that the CCD can be tripled by including 50 wt % LLZO, but half-cell cycling reveals that this comes at the cost of CE. Varying the LLZO loading shows that even a small amount of LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77% at just 2 wt % LLZO. Mesoscale modeling reveals that the increase in CCD cannot be explained by an increase in the macroscopic or microscopic stiffness of the electrolyte; only the microstructure of the LLZO nanofibers in the PEO-LiTFSI matrix slows dendrite growth by presenting physical barriers that the dendrites must push or grow around. This tortuous lithium growth mechanism around the LLZO is corroborated with mass spectrometry imaging. This work highlights important elements to consider in the design of CPEs for high-efficiency lithium metal batteries.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c04262</identifier><identifier>PMID: 37204772</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials & interfaces, 2023-05, Vol.15 (21), p.26047-26059</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1072-da883b239d929be2bb86de1a3956423b274ed88f651acedfb5a7816b674cad373</citedby><cites>FETCH-LOGICAL-c1072-da883b239d929be2bb86de1a3956423b274ed88f651acedfb5a7816b674cad373</cites><orcidid>0000-0003-2217-6392 ; 0000-0002-1248-5952 ; 0000-0002-0981-2318 ; 0000-0001-7856-1869 ; 0000-0002-2979-2131 ; 0000-0003-0151-8832 ; 0000-0003-4535-573X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37204772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Counihan, Michael J</creatorcontrib><creatorcontrib>Powers, Devon J</creatorcontrib><creatorcontrib>Barai, Pallab</creatorcontrib><creatorcontrib>Hu, Shiyu</creatorcontrib><creatorcontrib>Zagorac, Teodora</creatorcontrib><creatorcontrib>Zhou, Yundong</creatorcontrib><creatorcontrib>Lee, Jungkuk</creatorcontrib><creatorcontrib>Connell, Justin G</creatorcontrib><creatorcontrib>Chavan, Kanchan S</creatorcontrib><creatorcontrib>Gilmore, Ian S</creatorcontrib><creatorcontrib>Hanley, Luke</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Zhang, Yuepeng</creatorcontrib><creatorcontrib>Tepavcevic, Sanja</creatorcontrib><title>Understanding the Influence of Li 7 La 3 Zr 2 O 12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite formation and propagation. Not only does this lower the critical current density (CCD) before cell shorting, but the uncontrolled growth of lithium deposits may limit Coulombic efficiency (CE) by creating dead lithium. Here, we present a fundamental study on how the ceramic components of CPEs influence these characteristics. CPE membranes based on poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) with Li
La
Zr
O
(LLZO) nanofibers were fabricated with industrially relevant roll-to-roll manufacturing techniques. Galvanostatic cycling with lithium symmetric cells shows that the CCD can be tripled by including 50 wt % LLZO, but half-cell cycling reveals that this comes at the cost of CE. Varying the LLZO loading shows that even a small amount of LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77% at just 2 wt % LLZO. Mesoscale modeling reveals that the increase in CCD cannot be explained by an increase in the macroscopic or microscopic stiffness of the electrolyte; only the microstructure of the LLZO nanofibers in the PEO-LiTFSI matrix slows dendrite growth by presenting physical barriers that the dendrites must push or grow around. This tortuous lithium growth mechanism around the LLZO is corroborated with mass spectrometry imaging. This work highlights important elements to consider in the design of CPEs for high-efficiency lithium metal batteries.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kLtO7DAQhi0E4t6eEs0L7OJb4qREYQ8grYACGprIlzH4KLFXdrbY9-CBydEC1cxo_u8vPkL-MLpklLNrbYsew1JYKnnND8gpa6VcNLzih7-7lCfkrJR_lNaC0-qYnAjFqVSKn5LP1-gwl0lHF-I7TB8ID9EPW4wWIXlYB1Cw1iDgLQOHJ2AcHnVMPpgZgxShy2EKVg_QbXPGOMEtxhKmHcyV0KXtkEYTLKy8DzbMtTsIM5TGTZpTCM9p2I2YYTWgnfJ8TFguyJHXQ8HL73lOXv-uXrr7xfrp7qG7WS8so4ovnG4aYbhoXctbg9yYpnbItGirWvL5oyS6pvF1xbRF502lVcNqUytptRNKnJPlvtfmVEpG329yGHXe9Yz2__X2e739t94ZuNoDm60Z0f3Gf3yKL77teBY</recordid><startdate>20230531</startdate><enddate>20230531</enddate><creator>Counihan, Michael J</creator><creator>Powers, Devon J</creator><creator>Barai, Pallab</creator><creator>Hu, Shiyu</creator><creator>Zagorac, Teodora</creator><creator>Zhou, Yundong</creator><creator>Lee, Jungkuk</creator><creator>Connell, Justin G</creator><creator>Chavan, Kanchan S</creator><creator>Gilmore, Ian S</creator><creator>Hanley, Luke</creator><creator>Srinivasan, Venkat</creator><creator>Zhang, Yuepeng</creator><creator>Tepavcevic, Sanja</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2217-6392</orcidid><orcidid>https://orcid.org/0000-0002-1248-5952</orcidid><orcidid>https://orcid.org/0000-0002-0981-2318</orcidid><orcidid>https://orcid.org/0000-0001-7856-1869</orcidid><orcidid>https://orcid.org/0000-0002-2979-2131</orcidid><orcidid>https://orcid.org/0000-0003-0151-8832</orcidid><orcidid>https://orcid.org/0000-0003-4535-573X</orcidid></search><sort><creationdate>20230531</creationdate><title>Understanding the Influence of Li 7 La 3 Zr 2 O 12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes</title><author>Counihan, Michael J ; Powers, Devon J ; Barai, Pallab ; Hu, Shiyu ; Zagorac, Teodora ; Zhou, Yundong ; Lee, Jungkuk ; Connell, Justin G ; Chavan, Kanchan S ; Gilmore, Ian S ; Hanley, Luke ; Srinivasan, Venkat ; Zhang, Yuepeng ; Tepavcevic, Sanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1072-da883b239d929be2bb86de1a3956423b274ed88f651acedfb5a7816b674cad373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Counihan, Michael J</creatorcontrib><creatorcontrib>Powers, Devon J</creatorcontrib><creatorcontrib>Barai, Pallab</creatorcontrib><creatorcontrib>Hu, Shiyu</creatorcontrib><creatorcontrib>Zagorac, Teodora</creatorcontrib><creatorcontrib>Zhou, Yundong</creatorcontrib><creatorcontrib>Lee, Jungkuk</creatorcontrib><creatorcontrib>Connell, Justin G</creatorcontrib><creatorcontrib>Chavan, Kanchan S</creatorcontrib><creatorcontrib>Gilmore, Ian S</creatorcontrib><creatorcontrib>Hanley, Luke</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Zhang, Yuepeng</creatorcontrib><creatorcontrib>Tepavcevic, Sanja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Counihan, Michael J</au><au>Powers, Devon J</au><au>Barai, Pallab</au><au>Hu, Shiyu</au><au>Zagorac, Teodora</au><au>Zhou, Yundong</au><au>Lee, Jungkuk</au><au>Connell, Justin G</au><au>Chavan, Kanchan S</au><au>Gilmore, Ian S</au><au>Hanley, Luke</au><au>Srinivasan, Venkat</au><au>Zhang, Yuepeng</au><au>Tepavcevic, Sanja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Influence of Li 7 La 3 Zr 2 O 12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2023-05-31</date><risdate>2023</risdate><volume>15</volume><issue>21</issue><spage>26047</spage><epage>26059</epage><pages>26047-26059</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite formation and propagation. Not only does this lower the critical current density (CCD) before cell shorting, but the uncontrolled growth of lithium deposits may limit Coulombic efficiency (CE) by creating dead lithium. Here, we present a fundamental study on how the ceramic components of CPEs influence these characteristics. CPE membranes based on poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) with Li
La
Zr
O
(LLZO) nanofibers were fabricated with industrially relevant roll-to-roll manufacturing techniques. Galvanostatic cycling with lithium symmetric cells shows that the CCD can be tripled by including 50 wt % LLZO, but half-cell cycling reveals that this comes at the cost of CE. Varying the LLZO loading shows that even a small amount of LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77% at just 2 wt % LLZO. Mesoscale modeling reveals that the increase in CCD cannot be explained by an increase in the macroscopic or microscopic stiffness of the electrolyte; only the microstructure of the LLZO nanofibers in the PEO-LiTFSI matrix slows dendrite growth by presenting physical barriers that the dendrites must push or grow around. This tortuous lithium growth mechanism around the LLZO is corroborated with mass spectrometry imaging. This work highlights important elements to consider in the design of CPEs for high-efficiency lithium metal batteries.</abstract><cop>United States</cop><pmid>37204772</pmid><doi>10.1021/acsami.3c04262</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2217-6392</orcidid><orcidid>https://orcid.org/0000-0002-1248-5952</orcidid><orcidid>https://orcid.org/0000-0002-0981-2318</orcidid><orcidid>https://orcid.org/0000-0001-7856-1869</orcidid><orcidid>https://orcid.org/0000-0002-2979-2131</orcidid><orcidid>https://orcid.org/0000-0003-0151-8832</orcidid><orcidid>https://orcid.org/0000-0003-4535-573X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-05, Vol.15 (21), p.26047-26059 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_3c04262 |
source | American Chemical Society Journals |
title | Understanding the Influence of Li 7 La 3 Zr 2 O 12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Influence%20of%20Li%207%20La%203%20Zr%202%20O%2012%20Nanofibers%20on%20Critical%20Current%20Density%20and%20Coulombic%20Efficiency%20in%20Composite%20Polymer%20Electrolytes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Counihan,%20Michael%20J&rft.date=2023-05-31&rft.volume=15&rft.issue=21&rft.spage=26047&rft.epage=26059&rft.pages=26047-26059&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c04262&rft_dat=%3Cpubmed_cross%3E37204772%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37204772&rfr_iscdi=true |