Rational Design of NiZn x @CuO Nanoarray Architectures for Electrocatalytic Oxidation of Methanol

Methanol oxidation reaction (MOR) in anodes is one of the significant aspects of direct methanol fuel cells (DMFCs), which also plays a critical role in achieving a carbon-neutral economy. Designing and developing efficient, cost-effective, and durable non-Pt group metal-based methanol oxidation cat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-02, Vol.15 (7), p.9392-9400
Hauptverfasser: Han, Lingyi, Li, Hanyu, Yang, Lan, Liu, Yalan, Liu, Shantang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9400
container_issue 7
container_start_page 9392
container_title ACS applied materials & interfaces
container_volume 15
creator Han, Lingyi
Li, Hanyu
Yang, Lan
Liu, Yalan
Liu, Shantang
description Methanol oxidation reaction (MOR) in anodes is one of the significant aspects of direct methanol fuel cells (DMFCs), which also plays a critical role in achieving a carbon-neutral economy. Designing and developing efficient, cost-effective, and durable non-Pt group metal-based methanol oxidation catalysts are highly desired, but a gap still remains. Herein, we report well-defined hierarchical NiZn x @CuO nanoarray architectures as active electrocatalysts for MOR, synthesized by combining thermal oxidation treatment and magnetron sputtering deposition through a brass mesh precursor. After systematically evaluating the electrocatalytic performance of NiZn x @CuO nanoarray catalysts with different preparation conditions, we found that the NiZn1000@CuO (thermally oxidized at 500 °C for 2 h, nominal thickness of the NiZn alloy film is 1000 nm) electrode delivers a high current density of 449.3 mA cm–2 at 0.8 V for MOR in alkaline media as well as excellent operation stability (92% retention after 12 h). These outstanding MOR performances can be attributed to the hierarchical well-defined structure that can not only render abundant active sites and a synergistic effect to enhance the electrocatalytic activity but also can effectively facilitate mass and electron transport. More importantly, we found that partial Zn atoms could leach from the NiZn alloy, resulting in rough surface nanorods, which would further increase the specific surface area. These results indicate that the NiZn1000@CuO nanoarray architecture could be a promising Pt group metal alternative as an efficient, cost-effective, and durable anode catalyst for DMFCs.
doi_str_mv 10.1021/acsami.2c21054
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_2c21054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c947253384</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1420-695710415e99a842eede567753866c0a064cf842c19519a21ef28f22fd79fb423</originalsourceid><addsrcrecordid>eNp1kM1PwjAYhxujEUSvHk3PJsO2a7vtJgH8SBASoxcvy0vXSsnYSLsl8N9bHHLz9H7k9_wOD0K3lAwpYfQBlIeNHTLFKBH8DPVpxnmUMsHOTzvnPXTl_ZoQGTMiLlEvlolgMiZ9BO_Q2LqCEk-0t98Vrg2e268K7_DjuF3gOVQ1OAd7PHJqZRutmtZpj03t8LQMl6sVNFDuG6vwYmeL37pDy5tuVgEur9GFgdLrm-McoM-n6cf4JZotnl_Ho1kElDMSyUwklHAqdJZBypnWhRYySUScSqkIEMmVCX9FM0EzYFQblhrGTJFkZslZPEDDrle52nunTb51dgNun1OSH1zlnav86CoAdx2wbZcbXZzif3JC4L4LBDBf160Lmvx_bT_fFHOD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rational Design of NiZn x @CuO Nanoarray Architectures for Electrocatalytic Oxidation of Methanol</title><source>ACS Publications</source><creator>Han, Lingyi ; Li, Hanyu ; Yang, Lan ; Liu, Yalan ; Liu, Shantang</creator><creatorcontrib>Han, Lingyi ; Li, Hanyu ; Yang, Lan ; Liu, Yalan ; Liu, Shantang</creatorcontrib><description>Methanol oxidation reaction (MOR) in anodes is one of the significant aspects of direct methanol fuel cells (DMFCs), which also plays a critical role in achieving a carbon-neutral economy. Designing and developing efficient, cost-effective, and durable non-Pt group metal-based methanol oxidation catalysts are highly desired, but a gap still remains. Herein, we report well-defined hierarchical NiZn x @CuO nanoarray architectures as active electrocatalysts for MOR, synthesized by combining thermal oxidation treatment and magnetron sputtering deposition through a brass mesh precursor. After systematically evaluating the electrocatalytic performance of NiZn x @CuO nanoarray catalysts with different preparation conditions, we found that the NiZn1000@CuO (thermally oxidized at 500 °C for 2 h, nominal thickness of the NiZn alloy film is 1000 nm) electrode delivers a high current density of 449.3 mA cm–2 at 0.8 V for MOR in alkaline media as well as excellent operation stability (92% retention after 12 h). These outstanding MOR performances can be attributed to the hierarchical well-defined structure that can not only render abundant active sites and a synergistic effect to enhance the electrocatalytic activity but also can effectively facilitate mass and electron transport. More importantly, we found that partial Zn atoms could leach from the NiZn alloy, resulting in rough surface nanorods, which would further increase the specific surface area. These results indicate that the NiZn1000@CuO nanoarray architecture could be a promising Pt group metal alternative as an efficient, cost-effective, and durable anode catalyst for DMFCs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c21054</identifier><identifier>PMID: 36752630</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-02, Vol.15 (7), p.9392-9400</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1420-695710415e99a842eede567753866c0a064cf842c19519a21ef28f22fd79fb423</citedby><cites>FETCH-LOGICAL-a1420-695710415e99a842eede567753866c0a064cf842c19519a21ef28f22fd79fb423</cites><orcidid>0000-0001-5844-4884 ; 0000-0002-6403-8388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c21054$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c21054$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36752630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Lingyi</creatorcontrib><creatorcontrib>Li, Hanyu</creatorcontrib><creatorcontrib>Yang, Lan</creatorcontrib><creatorcontrib>Liu, Yalan</creatorcontrib><creatorcontrib>Liu, Shantang</creatorcontrib><title>Rational Design of NiZn x @CuO Nanoarray Architectures for Electrocatalytic Oxidation of Methanol</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Methanol oxidation reaction (MOR) in anodes is one of the significant aspects of direct methanol fuel cells (DMFCs), which also plays a critical role in achieving a carbon-neutral economy. Designing and developing efficient, cost-effective, and durable non-Pt group metal-based methanol oxidation catalysts are highly desired, but a gap still remains. Herein, we report well-defined hierarchical NiZn x @CuO nanoarray architectures as active electrocatalysts for MOR, synthesized by combining thermal oxidation treatment and magnetron sputtering deposition through a brass mesh precursor. After systematically evaluating the electrocatalytic performance of NiZn x @CuO nanoarray catalysts with different preparation conditions, we found that the NiZn1000@CuO (thermally oxidized at 500 °C for 2 h, nominal thickness of the NiZn alloy film is 1000 nm) electrode delivers a high current density of 449.3 mA cm–2 at 0.8 V for MOR in alkaline media as well as excellent operation stability (92% retention after 12 h). These outstanding MOR performances can be attributed to the hierarchical well-defined structure that can not only render abundant active sites and a synergistic effect to enhance the electrocatalytic activity but also can effectively facilitate mass and electron transport. More importantly, we found that partial Zn atoms could leach from the NiZn alloy, resulting in rough surface nanorods, which would further increase the specific surface area. These results indicate that the NiZn1000@CuO nanoarray architecture could be a promising Pt group metal alternative as an efficient, cost-effective, and durable anode catalyst for DMFCs.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PwjAYhxujEUSvHk3PJsO2a7vtJgH8SBASoxcvy0vXSsnYSLsl8N9bHHLz9H7k9_wOD0K3lAwpYfQBlIeNHTLFKBH8DPVpxnmUMsHOTzvnPXTl_ZoQGTMiLlEvlolgMiZ9BO_Q2LqCEk-0t98Vrg2e268K7_DjuF3gOVQ1OAd7PHJqZRutmtZpj03t8LQMl6sVNFDuG6vwYmeL37pDy5tuVgEur9GFgdLrm-McoM-n6cf4JZotnl_Ho1kElDMSyUwklHAqdJZBypnWhRYySUScSqkIEMmVCX9FM0EzYFQblhrGTJFkZslZPEDDrle52nunTb51dgNun1OSH1zlnav86CoAdx2wbZcbXZzif3JC4L4LBDBf160Lmvx_bT_fFHOD</recordid><startdate>20230222</startdate><enddate>20230222</enddate><creator>Han, Lingyi</creator><creator>Li, Hanyu</creator><creator>Yang, Lan</creator><creator>Liu, Yalan</creator><creator>Liu, Shantang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5844-4884</orcidid><orcidid>https://orcid.org/0000-0002-6403-8388</orcidid></search><sort><creationdate>20230222</creationdate><title>Rational Design of NiZn x @CuO Nanoarray Architectures for Electrocatalytic Oxidation of Methanol</title><author>Han, Lingyi ; Li, Hanyu ; Yang, Lan ; Liu, Yalan ; Liu, Shantang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1420-695710415e99a842eede567753866c0a064cf842c19519a21ef28f22fd79fb423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Lingyi</creatorcontrib><creatorcontrib>Li, Hanyu</creatorcontrib><creatorcontrib>Yang, Lan</creatorcontrib><creatorcontrib>Liu, Yalan</creatorcontrib><creatorcontrib>Liu, Shantang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Lingyi</au><au>Li, Hanyu</au><au>Yang, Lan</au><au>Liu, Yalan</au><au>Liu, Shantang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Design of NiZn x @CuO Nanoarray Architectures for Electrocatalytic Oxidation of Methanol</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-02-22</date><risdate>2023</risdate><volume>15</volume><issue>7</issue><spage>9392</spage><epage>9400</epage><pages>9392-9400</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Methanol oxidation reaction (MOR) in anodes is one of the significant aspects of direct methanol fuel cells (DMFCs), which also plays a critical role in achieving a carbon-neutral economy. Designing and developing efficient, cost-effective, and durable non-Pt group metal-based methanol oxidation catalysts are highly desired, but a gap still remains. Herein, we report well-defined hierarchical NiZn x @CuO nanoarray architectures as active electrocatalysts for MOR, synthesized by combining thermal oxidation treatment and magnetron sputtering deposition through a brass mesh precursor. After systematically evaluating the electrocatalytic performance of NiZn x @CuO nanoarray catalysts with different preparation conditions, we found that the NiZn1000@CuO (thermally oxidized at 500 °C for 2 h, nominal thickness of the NiZn alloy film is 1000 nm) electrode delivers a high current density of 449.3 mA cm–2 at 0.8 V for MOR in alkaline media as well as excellent operation stability (92% retention after 12 h). These outstanding MOR performances can be attributed to the hierarchical well-defined structure that can not only render abundant active sites and a synergistic effect to enhance the electrocatalytic activity but also can effectively facilitate mass and electron transport. More importantly, we found that partial Zn atoms could leach from the NiZn alloy, resulting in rough surface nanorods, which would further increase the specific surface area. These results indicate that the NiZn1000@CuO nanoarray architecture could be a promising Pt group metal alternative as an efficient, cost-effective, and durable anode catalyst for DMFCs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36752630</pmid><doi>10.1021/acsami.2c21054</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5844-4884</orcidid><orcidid>https://orcid.org/0000-0002-6403-8388</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-02, Vol.15 (7), p.9392-9400
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_2c21054
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Rational Design of NiZn x @CuO Nanoarray Architectures for Electrocatalytic Oxidation of Methanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Design%20of%20NiZn%20x%20@CuO%20Nanoarray%20Architectures%20for%20Electrocatalytic%20Oxidation%20of%20Methanol&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Han,%20Lingyi&rft.date=2023-02-22&rft.volume=15&rft.issue=7&rft.spage=9392&rft.epage=9400&rft.pages=9392-9400&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c21054&rft_dat=%3Cacs_cross%3Ec947253384%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36752630&rfr_iscdi=true