Thermal Conductivity of Amorphous NbO x Thin Films and Its Effect on Volatile Memristive Switching
Metal–oxide–metal (MOM) devices based on niobium oxide exhibit threshold switching (or current-controlled negative differential resistance) due to thermally induced conductivity changes produced by Joule heating. A detailed understanding of the device characteristics therefore relies on an understan...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-05, Vol.14 (18), p.21270-21277 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21277 |
---|---|
container_issue | 18 |
container_start_page | 21270 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Nandi, Sanjoy Kumar Das, Sujan Kumar Cui, Yubo El Helou, Assaad Nath, Shimul Kanti Ratcliff, Thomas Raad, Peter Elliman, Robert G. |
description | Metal–oxide–metal (MOM) devices based on niobium oxide exhibit threshold switching (or current-controlled negative differential resistance) due to thermally induced conductivity changes produced by Joule heating. A detailed understanding of the device characteristics therefore relies on an understanding of the thermal properties of the niobium oxide film and the MOM device structure. In this study, we use time-domain thermoreflectance to determine the thermal conductivity of amorphous NbO x films as a function of film composition and temperature. The thermal conductivity is shown to vary between 0.86 and 1.25 W·m–1·K–1 over the composition (x = 1.9 to 2.5) and temperature (293 to 453 K) ranges examined, and to increase with temperature for all compositions. The impact of these thermal conductivity variations on the quasistatic current–voltage (I–V) characteristics and oscillator dynamics of MOM devices is then investigated using a lumped-element circuit model. Understanding such effects is essential for engineering functional devices for nonvolatile memory and brain-inspired computing applications. |
doi_str_mv | 10.1021/acsami.2c04618 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_2c04618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g19366454</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1424-8f213889ab34502b5c9660e395ff26dcfb08012a175d69547e43d98b16d964f3</originalsourceid><addsrcrecordid>eNp1kEFPwjAYhhujEUSvHk3PJmDbtWU9EgJKgnJw8bp0XSsl20raTeTfWzPk5un7Du_z5s0DwD1GE4wIfpIqyNpOiEKU4_QCDLGgdJwSRi7PP6UDcBPCDiGeEMSuwSBhNGWC0CEosq32tazg3DVlp1r7ZdsjdAbOauf3W9cF-FZs4DfMtraBS1vVAcqmhKs2wIUxWrXQNfDDVbK1lYavuvY2xBYN3w-2VRH6vAVXRlZB353uCGTLRTZ_Ga83z6v5bD2WmJK40xCcpKmQRUIZIgVTgnOkE8GMIbxUpkApwkTiKSu5YHSqaVKKtMC8FJyaZAQmfa3yLgSvTb73tpb-mGOU_7rKe1f5yVUEHnpg3xW1Ls_xPzkx8NgHIpjvXOebOP-_th_x4XOK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal Conductivity of Amorphous NbO x Thin Films and Its Effect on Volatile Memristive Switching</title><source>ACS Publications</source><creator>Nandi, Sanjoy Kumar ; Das, Sujan Kumar ; Cui, Yubo ; El Helou, Assaad ; Nath, Shimul Kanti ; Ratcliff, Thomas ; Raad, Peter ; Elliman, Robert G.</creator><creatorcontrib>Nandi, Sanjoy Kumar ; Das, Sujan Kumar ; Cui, Yubo ; El Helou, Assaad ; Nath, Shimul Kanti ; Ratcliff, Thomas ; Raad, Peter ; Elliman, Robert G.</creatorcontrib><description>Metal–oxide–metal (MOM) devices based on niobium oxide exhibit threshold switching (or current-controlled negative differential resistance) due to thermally induced conductivity changes produced by Joule heating. A detailed understanding of the device characteristics therefore relies on an understanding of the thermal properties of the niobium oxide film and the MOM device structure. In this study, we use time-domain thermoreflectance to determine the thermal conductivity of amorphous NbO x films as a function of film composition and temperature. The thermal conductivity is shown to vary between 0.86 and 1.25 W·m–1·K–1 over the composition (x = 1.9 to 2.5) and temperature (293 to 453 K) ranges examined, and to increase with temperature for all compositions. The impact of these thermal conductivity variations on the quasistatic current–voltage (I–V) characteristics and oscillator dynamics of MOM devices is then investigated using a lumped-element circuit model. Understanding such effects is essential for engineering functional devices for nonvolatile memory and brain-inspired computing applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c04618</identifier><identifier>PMID: 35485924</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials & interfaces, 2022-05, Vol.14 (18), p.21270-21277</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1424-8f213889ab34502b5c9660e395ff26dcfb08012a175d69547e43d98b16d964f3</citedby><cites>FETCH-LOGICAL-a1424-8f213889ab34502b5c9660e395ff26dcfb08012a175d69547e43d98b16d964f3</cites><orcidid>0000-0002-6302-067X ; 0000-0003-3453-074X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c04618$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c04618$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35485924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nandi, Sanjoy Kumar</creatorcontrib><creatorcontrib>Das, Sujan Kumar</creatorcontrib><creatorcontrib>Cui, Yubo</creatorcontrib><creatorcontrib>El Helou, Assaad</creatorcontrib><creatorcontrib>Nath, Shimul Kanti</creatorcontrib><creatorcontrib>Ratcliff, Thomas</creatorcontrib><creatorcontrib>Raad, Peter</creatorcontrib><creatorcontrib>Elliman, Robert G.</creatorcontrib><title>Thermal Conductivity of Amorphous NbO x Thin Films and Its Effect on Volatile Memristive Switching</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Metal–oxide–metal (MOM) devices based on niobium oxide exhibit threshold switching (or current-controlled negative differential resistance) due to thermally induced conductivity changes produced by Joule heating. A detailed understanding of the device characteristics therefore relies on an understanding of the thermal properties of the niobium oxide film and the MOM device structure. In this study, we use time-domain thermoreflectance to determine the thermal conductivity of amorphous NbO x films as a function of film composition and temperature. The thermal conductivity is shown to vary between 0.86 and 1.25 W·m–1·K–1 over the composition (x = 1.9 to 2.5) and temperature (293 to 453 K) ranges examined, and to increase with temperature for all compositions. The impact of these thermal conductivity variations on the quasistatic current–voltage (I–V) characteristics and oscillator dynamics of MOM devices is then investigated using a lumped-element circuit model. Understanding such effects is essential for engineering functional devices for nonvolatile memory and brain-inspired computing applications.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwjAYhhujEUSvHk3PJmDbtWU9EgJKgnJw8bp0XSsl20raTeTfWzPk5un7Du_z5s0DwD1GE4wIfpIqyNpOiEKU4_QCDLGgdJwSRi7PP6UDcBPCDiGeEMSuwSBhNGWC0CEosq32tazg3DVlp1r7ZdsjdAbOauf3W9cF-FZs4DfMtraBS1vVAcqmhKs2wIUxWrXQNfDDVbK1lYavuvY2xBYN3w-2VRH6vAVXRlZB353uCGTLRTZ_Ga83z6v5bD2WmJK40xCcpKmQRUIZIgVTgnOkE8GMIbxUpkApwkTiKSu5YHSqaVKKtMC8FJyaZAQmfa3yLgSvTb73tpb-mGOU_7rKe1f5yVUEHnpg3xW1Ls_xPzkx8NgHIpjvXOebOP-_th_x4XOK</recordid><startdate>20220511</startdate><enddate>20220511</enddate><creator>Nandi, Sanjoy Kumar</creator><creator>Das, Sujan Kumar</creator><creator>Cui, Yubo</creator><creator>El Helou, Assaad</creator><creator>Nath, Shimul Kanti</creator><creator>Ratcliff, Thomas</creator><creator>Raad, Peter</creator><creator>Elliman, Robert G.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6302-067X</orcidid><orcidid>https://orcid.org/0000-0003-3453-074X</orcidid></search><sort><creationdate>20220511</creationdate><title>Thermal Conductivity of Amorphous NbO x Thin Films and Its Effect on Volatile Memristive Switching</title><author>Nandi, Sanjoy Kumar ; Das, Sujan Kumar ; Cui, Yubo ; El Helou, Assaad ; Nath, Shimul Kanti ; Ratcliff, Thomas ; Raad, Peter ; Elliman, Robert G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1424-8f213889ab34502b5c9660e395ff26dcfb08012a175d69547e43d98b16d964f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nandi, Sanjoy Kumar</creatorcontrib><creatorcontrib>Das, Sujan Kumar</creatorcontrib><creatorcontrib>Cui, Yubo</creatorcontrib><creatorcontrib>El Helou, Assaad</creatorcontrib><creatorcontrib>Nath, Shimul Kanti</creatorcontrib><creatorcontrib>Ratcliff, Thomas</creatorcontrib><creatorcontrib>Raad, Peter</creatorcontrib><creatorcontrib>Elliman, Robert G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nandi, Sanjoy Kumar</au><au>Das, Sujan Kumar</au><au>Cui, Yubo</au><au>El Helou, Assaad</au><au>Nath, Shimul Kanti</au><au>Ratcliff, Thomas</au><au>Raad, Peter</au><au>Elliman, Robert G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity of Amorphous NbO x Thin Films and Its Effect on Volatile Memristive Switching</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-05-11</date><risdate>2022</risdate><volume>14</volume><issue>18</issue><spage>21270</spage><epage>21277</epage><pages>21270-21277</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Metal–oxide–metal (MOM) devices based on niobium oxide exhibit threshold switching (or current-controlled negative differential resistance) due to thermally induced conductivity changes produced by Joule heating. A detailed understanding of the device characteristics therefore relies on an understanding of the thermal properties of the niobium oxide film and the MOM device structure. In this study, we use time-domain thermoreflectance to determine the thermal conductivity of amorphous NbO x films as a function of film composition and temperature. The thermal conductivity is shown to vary between 0.86 and 1.25 W·m–1·K–1 over the composition (x = 1.9 to 2.5) and temperature (293 to 453 K) ranges examined, and to increase with temperature for all compositions. The impact of these thermal conductivity variations on the quasistatic current–voltage (I–V) characteristics and oscillator dynamics of MOM devices is then investigated using a lumped-element circuit model. Understanding such effects is essential for engineering functional devices for nonvolatile memory and brain-inspired computing applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35485924</pmid><doi>10.1021/acsami.2c04618</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6302-067X</orcidid><orcidid>https://orcid.org/0000-0003-3453-074X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-05, Vol.14 (18), p.21270-21277 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_2c04618 |
source | ACS Publications |
subjects | Functional Inorganic Materials and Devices |
title | Thermal Conductivity of Amorphous NbO x Thin Films and Its Effect on Volatile Memristive Switching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity%20of%20Amorphous%20NbO%20x%20Thin%20Films%20and%20Its%20Effect%20on%20Volatile%20Memristive%20Switching&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Nandi,%20Sanjoy%20Kumar&rft.date=2022-05-11&rft.volume=14&rft.issue=18&rft.spage=21270&rft.epage=21277&rft.pages=21270-21277&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c04618&rft_dat=%3Cacs_cross%3Eg19366454%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35485924&rfr_iscdi=true |