Thermal Conductivity of Amorphous NbO x Thin Films and Its Effect on Volatile Memristive Switching

Metal–oxide–metal (MOM) devices based on niobium oxide exhibit threshold switching (or current-controlled negative differential resistance) due to thermally induced conductivity changes produced by Joule heating. A detailed understanding of the device characteristics therefore relies on an understan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-05, Vol.14 (18), p.21270-21277
Hauptverfasser: Nandi, Sanjoy Kumar, Das, Sujan Kumar, Cui, Yubo, El Helou, Assaad, Nath, Shimul Kanti, Ratcliff, Thomas, Raad, Peter, Elliman, Robert G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21277
container_issue 18
container_start_page 21270
container_title ACS applied materials & interfaces
container_volume 14
creator Nandi, Sanjoy Kumar
Das, Sujan Kumar
Cui, Yubo
El Helou, Assaad
Nath, Shimul Kanti
Ratcliff, Thomas
Raad, Peter
Elliman, Robert G.
description Metal–oxide–metal (MOM) devices based on niobium oxide exhibit threshold switching (or current-controlled negative differential resistance) due to thermally induced conductivity changes produced by Joule heating. A detailed understanding of the device characteristics therefore relies on an understanding of the thermal properties of the niobium oxide film and the MOM device structure. In this study, we use time-domain thermoreflectance to determine the thermal conductivity of amorphous NbO x films as a function of film composition and temperature. The thermal conductivity is shown to vary between 0.86 and 1.25 W·m–1·K–1 over the composition (x = 1.9 to 2.5) and temperature (293 to 453 K) ranges examined, and to increase with temperature for all compositions. The impact of these thermal conductivity variations on the quasistatic current–voltage (I–V) characteristics and oscillator dynamics of MOM devices is then investigated using a lumped-element circuit model. Understanding such effects is essential for engineering functional devices for nonvolatile memory and brain-inspired computing applications.
doi_str_mv 10.1021/acsami.2c04618
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_2c04618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g19366454</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1424-8f213889ab34502b5c9660e395ff26dcfb08012a175d69547e43d98b16d964f3</originalsourceid><addsrcrecordid>eNp1kEFPwjAYhhujEUSvHk3PJmDbtWU9EgJKgnJw8bp0XSsl20raTeTfWzPk5un7Du_z5s0DwD1GE4wIfpIqyNpOiEKU4_QCDLGgdJwSRi7PP6UDcBPCDiGeEMSuwSBhNGWC0CEosq32tazg3DVlp1r7ZdsjdAbOauf3W9cF-FZs4DfMtraBS1vVAcqmhKs2wIUxWrXQNfDDVbK1lYavuvY2xBYN3w-2VRH6vAVXRlZB353uCGTLRTZ_Ga83z6v5bD2WmJK40xCcpKmQRUIZIgVTgnOkE8GMIbxUpkApwkTiKSu5YHSqaVKKtMC8FJyaZAQmfa3yLgSvTb73tpb-mGOU_7rKe1f5yVUEHnpg3xW1Ls_xPzkx8NgHIpjvXOebOP-_th_x4XOK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal Conductivity of Amorphous NbO x Thin Films and Its Effect on Volatile Memristive Switching</title><source>ACS Publications</source><creator>Nandi, Sanjoy Kumar ; Das, Sujan Kumar ; Cui, Yubo ; El Helou, Assaad ; Nath, Shimul Kanti ; Ratcliff, Thomas ; Raad, Peter ; Elliman, Robert G.</creator><creatorcontrib>Nandi, Sanjoy Kumar ; Das, Sujan Kumar ; Cui, Yubo ; El Helou, Assaad ; Nath, Shimul Kanti ; Ratcliff, Thomas ; Raad, Peter ; Elliman, Robert G.</creatorcontrib><description>Metal–oxide–metal (MOM) devices based on niobium oxide exhibit threshold switching (or current-controlled negative differential resistance) due to thermally induced conductivity changes produced by Joule heating. A detailed understanding of the device characteristics therefore relies on an understanding of the thermal properties of the niobium oxide film and the MOM device structure. In this study, we use time-domain thermoreflectance to determine the thermal conductivity of amorphous NbO x films as a function of film composition and temperature. The thermal conductivity is shown to vary between 0.86 and 1.25 W·m–1·K–1 over the composition (x = 1.9 to 2.5) and temperature (293 to 453 K) ranges examined, and to increase with temperature for all compositions. The impact of these thermal conductivity variations on the quasistatic current–voltage (I–V) characteristics and oscillator dynamics of MOM devices is then investigated using a lumped-element circuit model. Understanding such effects is essential for engineering functional devices for nonvolatile memory and brain-inspired computing applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c04618</identifier><identifier>PMID: 35485924</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2022-05, Vol.14 (18), p.21270-21277</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1424-8f213889ab34502b5c9660e395ff26dcfb08012a175d69547e43d98b16d964f3</citedby><cites>FETCH-LOGICAL-a1424-8f213889ab34502b5c9660e395ff26dcfb08012a175d69547e43d98b16d964f3</cites><orcidid>0000-0002-6302-067X ; 0000-0003-3453-074X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c04618$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c04618$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35485924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nandi, Sanjoy Kumar</creatorcontrib><creatorcontrib>Das, Sujan Kumar</creatorcontrib><creatorcontrib>Cui, Yubo</creatorcontrib><creatorcontrib>El Helou, Assaad</creatorcontrib><creatorcontrib>Nath, Shimul Kanti</creatorcontrib><creatorcontrib>Ratcliff, Thomas</creatorcontrib><creatorcontrib>Raad, Peter</creatorcontrib><creatorcontrib>Elliman, Robert G.</creatorcontrib><title>Thermal Conductivity of Amorphous NbO x Thin Films and Its Effect on Volatile Memristive Switching</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Metal–oxide–metal (MOM) devices based on niobium oxide exhibit threshold switching (or current-controlled negative differential resistance) due to thermally induced conductivity changes produced by Joule heating. A detailed understanding of the device characteristics therefore relies on an understanding of the thermal properties of the niobium oxide film and the MOM device structure. In this study, we use time-domain thermoreflectance to determine the thermal conductivity of amorphous NbO x films as a function of film composition and temperature. The thermal conductivity is shown to vary between 0.86 and 1.25 W·m–1·K–1 over the composition (x = 1.9 to 2.5) and temperature (293 to 453 K) ranges examined, and to increase with temperature for all compositions. The impact of these thermal conductivity variations on the quasistatic current–voltage (I–V) characteristics and oscillator dynamics of MOM devices is then investigated using a lumped-element circuit model. Understanding such effects is essential for engineering functional devices for nonvolatile memory and brain-inspired computing applications.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwjAYhhujEUSvHk3PJmDbtWU9EgJKgnJw8bp0XSsl20raTeTfWzPk5un7Du_z5s0DwD1GE4wIfpIqyNpOiEKU4_QCDLGgdJwSRi7PP6UDcBPCDiGeEMSuwSBhNGWC0CEosq32tazg3DVlp1r7ZdsjdAbOauf3W9cF-FZs4DfMtraBS1vVAcqmhKs2wIUxWrXQNfDDVbK1lYavuvY2xBYN3w-2VRH6vAVXRlZB353uCGTLRTZ_Ga83z6v5bD2WmJK40xCcpKmQRUIZIgVTgnOkE8GMIbxUpkApwkTiKSu5YHSqaVKKtMC8FJyaZAQmfa3yLgSvTb73tpb-mGOU_7rKe1f5yVUEHnpg3xW1Ls_xPzkx8NgHIpjvXOebOP-_th_x4XOK</recordid><startdate>20220511</startdate><enddate>20220511</enddate><creator>Nandi, Sanjoy Kumar</creator><creator>Das, Sujan Kumar</creator><creator>Cui, Yubo</creator><creator>El Helou, Assaad</creator><creator>Nath, Shimul Kanti</creator><creator>Ratcliff, Thomas</creator><creator>Raad, Peter</creator><creator>Elliman, Robert G.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6302-067X</orcidid><orcidid>https://orcid.org/0000-0003-3453-074X</orcidid></search><sort><creationdate>20220511</creationdate><title>Thermal Conductivity of Amorphous NbO x Thin Films and Its Effect on Volatile Memristive Switching</title><author>Nandi, Sanjoy Kumar ; Das, Sujan Kumar ; Cui, Yubo ; El Helou, Assaad ; Nath, Shimul Kanti ; Ratcliff, Thomas ; Raad, Peter ; Elliman, Robert G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1424-8f213889ab34502b5c9660e395ff26dcfb08012a175d69547e43d98b16d964f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nandi, Sanjoy Kumar</creatorcontrib><creatorcontrib>Das, Sujan Kumar</creatorcontrib><creatorcontrib>Cui, Yubo</creatorcontrib><creatorcontrib>El Helou, Assaad</creatorcontrib><creatorcontrib>Nath, Shimul Kanti</creatorcontrib><creatorcontrib>Ratcliff, Thomas</creatorcontrib><creatorcontrib>Raad, Peter</creatorcontrib><creatorcontrib>Elliman, Robert G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nandi, Sanjoy Kumar</au><au>Das, Sujan Kumar</au><au>Cui, Yubo</au><au>El Helou, Assaad</au><au>Nath, Shimul Kanti</au><au>Ratcliff, Thomas</au><au>Raad, Peter</au><au>Elliman, Robert G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity of Amorphous NbO x Thin Films and Its Effect on Volatile Memristive Switching</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-05-11</date><risdate>2022</risdate><volume>14</volume><issue>18</issue><spage>21270</spage><epage>21277</epage><pages>21270-21277</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Metal–oxide–metal (MOM) devices based on niobium oxide exhibit threshold switching (or current-controlled negative differential resistance) due to thermally induced conductivity changes produced by Joule heating. A detailed understanding of the device characteristics therefore relies on an understanding of the thermal properties of the niobium oxide film and the MOM device structure. In this study, we use time-domain thermoreflectance to determine the thermal conductivity of amorphous NbO x films as a function of film composition and temperature. The thermal conductivity is shown to vary between 0.86 and 1.25 W·m–1·K–1 over the composition (x = 1.9 to 2.5) and temperature (293 to 453 K) ranges examined, and to increase with temperature for all compositions. The impact of these thermal conductivity variations on the quasistatic current–voltage (I–V) characteristics and oscillator dynamics of MOM devices is then investigated using a lumped-element circuit model. Understanding such effects is essential for engineering functional devices for nonvolatile memory and brain-inspired computing applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35485924</pmid><doi>10.1021/acsami.2c04618</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6302-067X</orcidid><orcidid>https://orcid.org/0000-0003-3453-074X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-05, Vol.14 (18), p.21270-21277
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_2c04618
source ACS Publications
subjects Functional Inorganic Materials and Devices
title Thermal Conductivity of Amorphous NbO x Thin Films and Its Effect on Volatile Memristive Switching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity%20of%20Amorphous%20NbO%20x%20Thin%20Films%20and%20Its%20Effect%20on%20Volatile%20Memristive%20Switching&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Nandi,%20Sanjoy%20Kumar&rft.date=2022-05-11&rft.volume=14&rft.issue=18&rft.spage=21270&rft.epage=21277&rft.pages=21270-21277&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c04618&rft_dat=%3Cacs_cross%3Eg19366454%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35485924&rfr_iscdi=true