Improved Thermal Stability and Enhanced Thermoelectric Properties of p-Type BaCu 2 Te 2 by Doping of Cl

Doping in semiconductors is a widely implemented strategy for manipulation of carrier concentration, which is a critical parameter to regulate the thermoelectric performance. Stoichiometric BaCu Te shows high hole concentration and unstable transport properties owing to the inherent Cu vacancy and d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-02, Vol.14 (4), p.5634-5642
Hauptverfasser: Li, Yang, Weng, Tianyao, Li, Peisi, Huang, Hai, He, Xinliu, Guo, Kai, Zhang, Jiye, Xing, Juanjuan, Li, Shuankui, Jiang, Ying, Luo, Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5642
container_issue 4
container_start_page 5634
container_title ACS applied materials & interfaces
container_volume 14
creator Li, Yang
Weng, Tianyao
Li, Peisi
Huang, Hai
He, Xinliu
Guo, Kai
Zhang, Jiye
Xing, Juanjuan
Li, Shuankui
Jiang, Ying
Luo, Jun
description Doping in semiconductors is a widely implemented strategy for manipulation of carrier concentration, which is a critical parameter to regulate the thermoelectric performance. Stoichiometric BaCu Te shows high hole concentration and unstable transport properties owing to the inherent Cu vacancy and dynamic precipitation behavior. In this work, Te has been partially substituted by Cl in BaCu Te to suppress the overhigh hole concentration. Due to the high electronegativity of Cl, strong Cl-Cu bonds can significantly inhibit the Cu migration and the consequent dynamic precipitation. Meanwhile, nano-precipitate BaCl distributes in the grain boundary, acting as ionic blocking layers. Therefore, the thermal stability of the samples can be essentially improved via chemical bonding strengthening and grain boundary engineering. In terms of thermal transport, the introduced point defects and second phase strengthen the short-wavelength and medium-wavelength phonon scattering, leading to further reduced thermal conductivity. Eventually, the repeatable value of BaCu Te Cl reached 1.22 at 823 K, which is higher by 19.6% compared with 1.02 of pristine BaCu Te . The average s of BaCu Te Cl ( = 0, 0.02, 0.04, and 0.06) in the temperature range of 323-823 K are 0.737 for = 0.02, 0.689 for = 0.04, and 0.667 for = 0.06, which are 24.6, 17.2, and 13.4% higher than the average of 0.588 corresponding to the undoped sample, respectively. The study shows that synergetic enhancements of thermal stability and thermoelectric properties can be achieved by strengthening chemical bonding and constructing ionic blocking layers in the grain boundary, which can be applied to other fast-ionic conductor thermoelectric materials.
doi_str_mv 10.1021/acsami.1c23212
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_1c23212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35057614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1074-f1cefe2f6629d2b2a3cf400b58a480a6d1cdec3959e3785f58205dd903e2332b3</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMobk5ffZT8A5357NpHrVMHAwXrc0mTmy3Sj5B0Qv97Nzb3cs-Fc8-B-0PonpI5JYw-Kh1V6-ZUM84ou0BTmguRZEyyy_MuxATdxPhDSMoZkddowiWRi5SKKdqsWh_6XzC43EJoVYO_BlW7xg0jVp3By26rOv1v99CAHoLT-DP0HsLgIOLeYp-Uowf8rIodZriE_ahH_NJ7120OftHcoiurmgh3J52h79dlWbwn64-3VfG0TjQlC5FYqsECs2nKcsNqpri2gpBaZkpkRKWGagOa5zIHvsikldn-IWNywoFxzmo-Q_Njrw59jAFs5YNrVRgrSqoDsepIrDoR2wcejgG_q1sw5_N_RPwPFLVncg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved Thermal Stability and Enhanced Thermoelectric Properties of p-Type BaCu 2 Te 2 by Doping of Cl</title><source>ACS Publications</source><creator>Li, Yang ; Weng, Tianyao ; Li, Peisi ; Huang, Hai ; He, Xinliu ; Guo, Kai ; Zhang, Jiye ; Xing, Juanjuan ; Li, Shuankui ; Jiang, Ying ; Luo, Jun</creator><creatorcontrib>Li, Yang ; Weng, Tianyao ; Li, Peisi ; Huang, Hai ; He, Xinliu ; Guo, Kai ; Zhang, Jiye ; Xing, Juanjuan ; Li, Shuankui ; Jiang, Ying ; Luo, Jun</creatorcontrib><description>Doping in semiconductors is a widely implemented strategy for manipulation of carrier concentration, which is a critical parameter to regulate the thermoelectric performance. Stoichiometric BaCu Te shows high hole concentration and unstable transport properties owing to the inherent Cu vacancy and dynamic precipitation behavior. In this work, Te has been partially substituted by Cl in BaCu Te to suppress the overhigh hole concentration. Due to the high electronegativity of Cl, strong Cl-Cu bonds can significantly inhibit the Cu migration and the consequent dynamic precipitation. Meanwhile, nano-precipitate BaCl distributes in the grain boundary, acting as ionic blocking layers. Therefore, the thermal stability of the samples can be essentially improved via chemical bonding strengthening and grain boundary engineering. In terms of thermal transport, the introduced point defects and second phase strengthen the short-wavelength and medium-wavelength phonon scattering, leading to further reduced thermal conductivity. Eventually, the repeatable value of BaCu Te Cl reached 1.22 at 823 K, which is higher by 19.6% compared with 1.02 of pristine BaCu Te . The average s of BaCu Te Cl ( = 0, 0.02, 0.04, and 0.06) in the temperature range of 323-823 K are 0.737 for = 0.02, 0.689 for = 0.04, and 0.667 for = 0.06, which are 24.6, 17.2, and 13.4% higher than the average of 0.588 corresponding to the undoped sample, respectively. The study shows that synergetic enhancements of thermal stability and thermoelectric properties can be achieved by strengthening chemical bonding and constructing ionic blocking layers in the grain boundary, which can be applied to other fast-ionic conductor thermoelectric materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c23212</identifier><identifier>PMID: 35057614</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2022-02, Vol.14 (4), p.5634-5642</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1074-f1cefe2f6629d2b2a3cf400b58a480a6d1cdec3959e3785f58205dd903e2332b3</citedby><cites>FETCH-LOGICAL-c1074-f1cefe2f6629d2b2a3cf400b58a480a6d1cdec3959e3785f58205dd903e2332b3</cites><orcidid>0000-0001-9359-6701 ; 0000-0002-8235-2338 ; 0000-0002-8486-4185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35057614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Weng, Tianyao</creatorcontrib><creatorcontrib>Li, Peisi</creatorcontrib><creatorcontrib>Huang, Hai</creatorcontrib><creatorcontrib>He, Xinliu</creatorcontrib><creatorcontrib>Guo, Kai</creatorcontrib><creatorcontrib>Zhang, Jiye</creatorcontrib><creatorcontrib>Xing, Juanjuan</creatorcontrib><creatorcontrib>Li, Shuankui</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><title>Improved Thermal Stability and Enhanced Thermoelectric Properties of p-Type BaCu 2 Te 2 by Doping of Cl</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Doping in semiconductors is a widely implemented strategy for manipulation of carrier concentration, which is a critical parameter to regulate the thermoelectric performance. Stoichiometric BaCu Te shows high hole concentration and unstable transport properties owing to the inherent Cu vacancy and dynamic precipitation behavior. In this work, Te has been partially substituted by Cl in BaCu Te to suppress the overhigh hole concentration. Due to the high electronegativity of Cl, strong Cl-Cu bonds can significantly inhibit the Cu migration and the consequent dynamic precipitation. Meanwhile, nano-precipitate BaCl distributes in the grain boundary, acting as ionic blocking layers. Therefore, the thermal stability of the samples can be essentially improved via chemical bonding strengthening and grain boundary engineering. In terms of thermal transport, the introduced point defects and second phase strengthen the short-wavelength and medium-wavelength phonon scattering, leading to further reduced thermal conductivity. Eventually, the repeatable value of BaCu Te Cl reached 1.22 at 823 K, which is higher by 19.6% compared with 1.02 of pristine BaCu Te . The average s of BaCu Te Cl ( = 0, 0.02, 0.04, and 0.06) in the temperature range of 323-823 K are 0.737 for = 0.02, 0.689 for = 0.04, and 0.667 for = 0.06, which are 24.6, 17.2, and 13.4% higher than the average of 0.588 corresponding to the undoped sample, respectively. The study shows that synergetic enhancements of thermal stability and thermoelectric properties can be achieved by strengthening chemical bonding and constructing ionic blocking layers in the grain boundary, which can be applied to other fast-ionic conductor thermoelectric materials.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMobk5ffZT8A5357NpHrVMHAwXrc0mTmy3Sj5B0Qv97Nzb3cs-Fc8-B-0PonpI5JYw-Kh1V6-ZUM84ou0BTmguRZEyyy_MuxATdxPhDSMoZkddowiWRi5SKKdqsWh_6XzC43EJoVYO_BlW7xg0jVp3By26rOv1v99CAHoLT-DP0HsLgIOLeYp-Uowf8rIodZriE_ahH_NJ7120OftHcoiurmgh3J52h79dlWbwn64-3VfG0TjQlC5FYqsECs2nKcsNqpri2gpBaZkpkRKWGagOa5zIHvsikldn-IWNywoFxzmo-Q_Njrw59jAFs5YNrVRgrSqoDsepIrDoR2wcejgG_q1sw5_N_RPwPFLVncg</recordid><startdate>20220202</startdate><enddate>20220202</enddate><creator>Li, Yang</creator><creator>Weng, Tianyao</creator><creator>Li, Peisi</creator><creator>Huang, Hai</creator><creator>He, Xinliu</creator><creator>Guo, Kai</creator><creator>Zhang, Jiye</creator><creator>Xing, Juanjuan</creator><creator>Li, Shuankui</creator><creator>Jiang, Ying</creator><creator>Luo, Jun</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9359-6701</orcidid><orcidid>https://orcid.org/0000-0002-8235-2338</orcidid><orcidid>https://orcid.org/0000-0002-8486-4185</orcidid></search><sort><creationdate>20220202</creationdate><title>Improved Thermal Stability and Enhanced Thermoelectric Properties of p-Type BaCu 2 Te 2 by Doping of Cl</title><author>Li, Yang ; Weng, Tianyao ; Li, Peisi ; Huang, Hai ; He, Xinliu ; Guo, Kai ; Zhang, Jiye ; Xing, Juanjuan ; Li, Shuankui ; Jiang, Ying ; Luo, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1074-f1cefe2f6629d2b2a3cf400b58a480a6d1cdec3959e3785f58205dd903e2332b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Weng, Tianyao</creatorcontrib><creatorcontrib>Li, Peisi</creatorcontrib><creatorcontrib>Huang, Hai</creatorcontrib><creatorcontrib>He, Xinliu</creatorcontrib><creatorcontrib>Guo, Kai</creatorcontrib><creatorcontrib>Zhang, Jiye</creatorcontrib><creatorcontrib>Xing, Juanjuan</creatorcontrib><creatorcontrib>Li, Shuankui</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yang</au><au>Weng, Tianyao</au><au>Li, Peisi</au><au>Huang, Hai</au><au>He, Xinliu</au><au>Guo, Kai</au><au>Zhang, Jiye</au><au>Xing, Juanjuan</au><au>Li, Shuankui</au><au>Jiang, Ying</au><au>Luo, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Thermal Stability and Enhanced Thermoelectric Properties of p-Type BaCu 2 Te 2 by Doping of Cl</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2022-02-02</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><spage>5634</spage><epage>5642</epage><pages>5634-5642</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Doping in semiconductors is a widely implemented strategy for manipulation of carrier concentration, which is a critical parameter to regulate the thermoelectric performance. Stoichiometric BaCu Te shows high hole concentration and unstable transport properties owing to the inherent Cu vacancy and dynamic precipitation behavior. In this work, Te has been partially substituted by Cl in BaCu Te to suppress the overhigh hole concentration. Due to the high electronegativity of Cl, strong Cl-Cu bonds can significantly inhibit the Cu migration and the consequent dynamic precipitation. Meanwhile, nano-precipitate BaCl distributes in the grain boundary, acting as ionic blocking layers. Therefore, the thermal stability of the samples can be essentially improved via chemical bonding strengthening and grain boundary engineering. In terms of thermal transport, the introduced point defects and second phase strengthen the short-wavelength and medium-wavelength phonon scattering, leading to further reduced thermal conductivity. Eventually, the repeatable value of BaCu Te Cl reached 1.22 at 823 K, which is higher by 19.6% compared with 1.02 of pristine BaCu Te . The average s of BaCu Te Cl ( = 0, 0.02, 0.04, and 0.06) in the temperature range of 323-823 K are 0.737 for = 0.02, 0.689 for = 0.04, and 0.667 for = 0.06, which are 24.6, 17.2, and 13.4% higher than the average of 0.588 corresponding to the undoped sample, respectively. The study shows that synergetic enhancements of thermal stability and thermoelectric properties can be achieved by strengthening chemical bonding and constructing ionic blocking layers in the grain boundary, which can be applied to other fast-ionic conductor thermoelectric materials.</abstract><cop>United States</cop><pmid>35057614</pmid><doi>10.1021/acsami.1c23212</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9359-6701</orcidid><orcidid>https://orcid.org/0000-0002-8235-2338</orcidid><orcidid>https://orcid.org/0000-0002-8486-4185</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-02, Vol.14 (4), p.5634-5642
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_1c23212
source ACS Publications
title Improved Thermal Stability and Enhanced Thermoelectric Properties of p-Type BaCu 2 Te 2 by Doping of Cl
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Thermal%20Stability%20and%20Enhanced%20Thermoelectric%20Properties%20of%20p-Type%20BaCu%202%20Te%202%20by%20Doping%20of%20Cl&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Yang&rft.date=2022-02-02&rft.volume=14&rft.issue=4&rft.spage=5634&rft.epage=5642&rft.pages=5634-5642&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c23212&rft_dat=%3Cpubmed_cross%3E35057614%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35057614&rfr_iscdi=true