Poly( N -phenylglycine)/MoS 2 Nanohybrid with Synergistic Solar-Thermal Conversion for Efficient Water Purification and Thermoelectric Power Generation

Solar interfacial evaporation is an emerging technology in solar energy harvesting developed to remedy the global energy crisis and the lack of freshwater resources. However, developing fully enhanced thermal management to optimize solar-heat utilization efficiency and form remains a great challenge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-01, Vol.14 (1), p.1034-1044
Hauptverfasser: Lin, Zhaoxing, Wu, Tingting, Feng, Yan-Fang, Shi, Jian, Zhou, Bo, Zhu, Chunhong, Wang, Yiyu, Liang, Ruilu, Mizuno, Mamoru
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue 1
container_start_page 1034
container_title ACS applied materials & interfaces
container_volume 14
creator Lin, Zhaoxing
Wu, Tingting
Feng, Yan-Fang
Shi, Jian
Zhou, Bo
Zhu, Chunhong
Wang, Yiyu
Liang, Ruilu
Mizuno, Mamoru
description Solar interfacial evaporation is an emerging technology in solar energy harvesting developed to remedy the global energy crisis and the lack of freshwater resources. However, developing fully enhanced thermal management to optimize solar-heat utilization efficiency and form remains a great challenge. We created a synergistic photothermal layer from a poly( -phenylglycine) (PNPG)/MoS nanohybrid via electrostatic-induced self-assembly for a broad-spectrum and efficient solar absorption. The PNPG/MoS system provided effective synergistic photothermal conversion and good water transmission, enabling rapid solar steam escape. Notably, synergistic coupling of solar evaporation-thermoelectric (TE) power generation was also achieved, providing more efficient exploitation of solar heat. The system demonstrated a solar evaporation rate of up to 1.70 kg m h and achieved a maximum thermoelectric output power with 0.23 W m under one sun. The high-performance PNPG/MoS synergistic photothermal system developed in this study offers potential opportunities for coupling solar water purification with thermoelectric power generation to meet the needs of resource-scarce areas.
doi_str_mv 10.1021/acsami.1c20393
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_1c20393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34935337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1077-6e2a146a515b4a47dadc3527e229007921424f9db8ecfbfb756afbd9bea43f243</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGI4huXZpZ6qIwr7Z0aQiiCSIJGJfNdHqHjikzZFok_SX-XctDVvfk5jtn8SF0T0mfEkYHUlVybfpUMcITfoG6NBEiGLKQXZ6zEB10U1XfhESckfAadbhIeMh53EW_c1c2j3iGg00BtilXZaOMhafBu1tghmfSuqLJvMnxztQFXjQW_MpUtVF44Urpg2UBfi1LPHL2B3xlnMXaeTzW2igDtsZfsgaP51tv2o-s94C0OT70HJSgat-Ozd2upSbQzh-YW3SlZVnB3en20OfLeDl6DaYfk7fR8zRQlMRxEAGTVEQypGEmpIhzmSseshgYSwiJE0YFEzrJsyEoneksDiOpszzJQAqumeA91D_uKu-qyoNON96spW9SStK94fRoOD0ZbgsPx8Jmm60hP-P_Svkfrzt7eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Poly( N -phenylglycine)/MoS 2 Nanohybrid with Synergistic Solar-Thermal Conversion for Efficient Water Purification and Thermoelectric Power Generation</title><source>American Chemical Society Journals</source><creator>Lin, Zhaoxing ; Wu, Tingting ; Feng, Yan-Fang ; Shi, Jian ; Zhou, Bo ; Zhu, Chunhong ; Wang, Yiyu ; Liang, Ruilu ; Mizuno, Mamoru</creator><creatorcontrib>Lin, Zhaoxing ; Wu, Tingting ; Feng, Yan-Fang ; Shi, Jian ; Zhou, Bo ; Zhu, Chunhong ; Wang, Yiyu ; Liang, Ruilu ; Mizuno, Mamoru</creatorcontrib><description>Solar interfacial evaporation is an emerging technology in solar energy harvesting developed to remedy the global energy crisis and the lack of freshwater resources. However, developing fully enhanced thermal management to optimize solar-heat utilization efficiency and form remains a great challenge. We created a synergistic photothermal layer from a poly( -phenylglycine) (PNPG)/MoS nanohybrid via electrostatic-induced self-assembly for a broad-spectrum and efficient solar absorption. The PNPG/MoS system provided effective synergistic photothermal conversion and good water transmission, enabling rapid solar steam escape. Notably, synergistic coupling of solar evaporation-thermoelectric (TE) power generation was also achieved, providing more efficient exploitation of solar heat. The system demonstrated a solar evaporation rate of up to 1.70 kg m h and achieved a maximum thermoelectric output power with 0.23 W m under one sun. The high-performance PNPG/MoS synergistic photothermal system developed in this study offers potential opportunities for coupling solar water purification with thermoelectric power generation to meet the needs of resource-scarce areas.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c20393</identifier><identifier>PMID: 34935337</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2022-01, Vol.14 (1), p.1034-1044</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1077-6e2a146a515b4a47dadc3527e229007921424f9db8ecfbfb756afbd9bea43f243</citedby><cites>FETCH-LOGICAL-c1077-6e2a146a515b4a47dadc3527e229007921424f9db8ecfbfb756afbd9bea43f243</cites><orcidid>0000-0002-0481-3442 ; 0000-0001-9251-7899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34935337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Zhaoxing</creatorcontrib><creatorcontrib>Wu, Tingting</creatorcontrib><creatorcontrib>Feng, Yan-Fang</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Zhu, Chunhong</creatorcontrib><creatorcontrib>Wang, Yiyu</creatorcontrib><creatorcontrib>Liang, Ruilu</creatorcontrib><creatorcontrib>Mizuno, Mamoru</creatorcontrib><title>Poly( N -phenylglycine)/MoS 2 Nanohybrid with Synergistic Solar-Thermal Conversion for Efficient Water Purification and Thermoelectric Power Generation</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Solar interfacial evaporation is an emerging technology in solar energy harvesting developed to remedy the global energy crisis and the lack of freshwater resources. However, developing fully enhanced thermal management to optimize solar-heat utilization efficiency and form remains a great challenge. We created a synergistic photothermal layer from a poly( -phenylglycine) (PNPG)/MoS nanohybrid via electrostatic-induced self-assembly for a broad-spectrum and efficient solar absorption. The PNPG/MoS system provided effective synergistic photothermal conversion and good water transmission, enabling rapid solar steam escape. Notably, synergistic coupling of solar evaporation-thermoelectric (TE) power generation was also achieved, providing more efficient exploitation of solar heat. The system demonstrated a solar evaporation rate of up to 1.70 kg m h and achieved a maximum thermoelectric output power with 0.23 W m under one sun. The high-performance PNPG/MoS synergistic photothermal system developed in this study offers potential opportunities for coupling solar water purification with thermoelectric power generation to meet the needs of resource-scarce areas.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwkAUhSdGI4huXZpZ6qIwr7Z0aQiiCSIJGJfNdHqHjikzZFok_SX-XctDVvfk5jtn8SF0T0mfEkYHUlVybfpUMcITfoG6NBEiGLKQXZ6zEB10U1XfhESckfAadbhIeMh53EW_c1c2j3iGg00BtilXZaOMhafBu1tghmfSuqLJvMnxztQFXjQW_MpUtVF44Urpg2UBfi1LPHL2B3xlnMXaeTzW2igDtsZfsgaP51tv2o-s94C0OT70HJSgat-Ozd2upSbQzh-YW3SlZVnB3en20OfLeDl6DaYfk7fR8zRQlMRxEAGTVEQypGEmpIhzmSseshgYSwiJE0YFEzrJsyEoneksDiOpszzJQAqumeA91D_uKu-qyoNON96spW9SStK94fRoOD0ZbgsPx8Jmm60hP-P_Svkfrzt7eg</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Lin, Zhaoxing</creator><creator>Wu, Tingting</creator><creator>Feng, Yan-Fang</creator><creator>Shi, Jian</creator><creator>Zhou, Bo</creator><creator>Zhu, Chunhong</creator><creator>Wang, Yiyu</creator><creator>Liang, Ruilu</creator><creator>Mizuno, Mamoru</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0481-3442</orcidid><orcidid>https://orcid.org/0000-0001-9251-7899</orcidid></search><sort><creationdate>20220112</creationdate><title>Poly( N -phenylglycine)/MoS 2 Nanohybrid with Synergistic Solar-Thermal Conversion for Efficient Water Purification and Thermoelectric Power Generation</title><author>Lin, Zhaoxing ; Wu, Tingting ; Feng, Yan-Fang ; Shi, Jian ; Zhou, Bo ; Zhu, Chunhong ; Wang, Yiyu ; Liang, Ruilu ; Mizuno, Mamoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1077-6e2a146a515b4a47dadc3527e229007921424f9db8ecfbfb756afbd9bea43f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zhaoxing</creatorcontrib><creatorcontrib>Wu, Tingting</creatorcontrib><creatorcontrib>Feng, Yan-Fang</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Zhu, Chunhong</creatorcontrib><creatorcontrib>Wang, Yiyu</creatorcontrib><creatorcontrib>Liang, Ruilu</creatorcontrib><creatorcontrib>Mizuno, Mamoru</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Zhaoxing</au><au>Wu, Tingting</au><au>Feng, Yan-Fang</au><au>Shi, Jian</au><au>Zhou, Bo</au><au>Zhu, Chunhong</au><au>Wang, Yiyu</au><au>Liang, Ruilu</au><au>Mizuno, Mamoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly( N -phenylglycine)/MoS 2 Nanohybrid with Synergistic Solar-Thermal Conversion for Efficient Water Purification and Thermoelectric Power Generation</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>1034</spage><epage>1044</epage><pages>1034-1044</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Solar interfacial evaporation is an emerging technology in solar energy harvesting developed to remedy the global energy crisis and the lack of freshwater resources. However, developing fully enhanced thermal management to optimize solar-heat utilization efficiency and form remains a great challenge. We created a synergistic photothermal layer from a poly( -phenylglycine) (PNPG)/MoS nanohybrid via electrostatic-induced self-assembly for a broad-spectrum and efficient solar absorption. The PNPG/MoS system provided effective synergistic photothermal conversion and good water transmission, enabling rapid solar steam escape. Notably, synergistic coupling of solar evaporation-thermoelectric (TE) power generation was also achieved, providing more efficient exploitation of solar heat. The system demonstrated a solar evaporation rate of up to 1.70 kg m h and achieved a maximum thermoelectric output power with 0.23 W m under one sun. The high-performance PNPG/MoS synergistic photothermal system developed in this study offers potential opportunities for coupling solar water purification with thermoelectric power generation to meet the needs of resource-scarce areas.</abstract><cop>United States</cop><pmid>34935337</pmid><doi>10.1021/acsami.1c20393</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0481-3442</orcidid><orcidid>https://orcid.org/0000-0001-9251-7899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-01, Vol.14 (1), p.1034-1044
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_1c20393
source American Chemical Society Journals
title Poly( N -phenylglycine)/MoS 2 Nanohybrid with Synergistic Solar-Thermal Conversion for Efficient Water Purification and Thermoelectric Power Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(%20N%20-phenylglycine)/MoS%202%20Nanohybrid%20with%20Synergistic%20Solar-Thermal%20Conversion%20for%20Efficient%20Water%20Purification%20and%20Thermoelectric%20Power%20Generation&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lin,%20Zhaoxing&rft.date=2022-01-12&rft.volume=14&rft.issue=1&rft.spage=1034&rft.epage=1044&rft.pages=1034-1044&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c20393&rft_dat=%3Cpubmed_cross%3E34935337%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34935337&rfr_iscdi=true