Interfacial Ammonia Selectivity, Atmospheric Passivation, and Molecular Identification in Graphene-Nanopored Activated Carbon Molecular-Sieve Gas Sensors

Graphene’s inherent nonselectivity and strong atmospheric doping render most graphene-based sensors unsuitable for atmospheric applications in environmental monitoring of pollutants and breath detection of biomarkers for noninvasive medical diagnosis. Hence, demonstrations of graphene’s gas sensitiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-12, Vol.13 (51), p.61770-61779
Hauptverfasser: Agbonlahor, Osazuwa G, Muruganathan, Manoharan, Ramaraj, Sankar G, Wang, Zhongwang, Hammam, Ahmed M.M, Kareekunnan, Afsal, Maki, Hisashi, Hattori, Masashi, Shimomai, Kenichi, Mizuta, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61779
container_issue 51
container_start_page 61770
container_title ACS applied materials & interfaces
container_volume 13
creator Agbonlahor, Osazuwa G
Muruganathan, Manoharan
Ramaraj, Sankar G
Wang, Zhongwang
Hammam, Ahmed M.M
Kareekunnan, Afsal
Maki, Hisashi
Hattori, Masashi
Shimomai, Kenichi
Mizuta, Hiroshi
description Graphene’s inherent nonselectivity and strong atmospheric doping render most graphene-based sensors unsuitable for atmospheric applications in environmental monitoring of pollutants and breath detection of biomarkers for noninvasive medical diagnosis. Hence, demonstrations of graphene’s gas sensitivity are often in inert environments such as nitrogen, consequently of little practical relevance. Herein, target gas sensing at the graphene–activated carbon interface of a graphene-nanopored activated carbon molecular-sieve sensor obtained via the postlithographic pyrolysis of Novolac resin residues on graphene nanoribbons is shown to simultaneously induce ammonia selectivity and atmospheric passivation of graphene. Consequently, 500 parts per trillion (ppt) ammonia sensitivity in atmospheric air is achieved with a response time of ∼3 s. The similar graphene and a-C workfunctions ensure that the ambipolar and gas-adsorption-induced charge transfer characteristics of pristine graphene are retained. Harnessing the van der Waals bonding memory and electrically tunable charge-transfer characteristics of the adsorbed molecules on the graphene channel, a molecular identification technique (charge neutrality point disparity) is developed and demonstrated to be suitable even at parts per billion (ppb) gas concentrations. The selectivity and atmospheric passivation induced by the graphene–activated carbon interface enable atmospheric applications of graphene sensors in environmental monitoring and noninvasive medical diagnosis.
doi_str_mv 10.1021/acsami.1c19138
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_1c19138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a003590863</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-bedcc738f94c5c742a6f5ca8e25b4b98958f4330b6e8ec7eb114d152b413cee63</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EoqWwZYm8Rk2JY-e1rCoolcpDKqyjiTMRrhK7stNK_RT-FpeU7lh5JJ9zZ3QJuWXhhIURewDpoFUTJlnOeHZGhiwXIsiiODo_zUIMyJVz6zBMeBTGl2TARc4ET5Mh-V7oDm0NUkFDp21rtAK6wgZlp3aq24_ptGuN23yhVZK-g3NqB50yekxBV_TFeHLbgKWLCnWnaiV_f6nSdG7BaxqDV9BmYyxWdHpIhc5PM7Clx05-sFK4QzoH57drZ6y7Jhc1NA5vju-IfD49fsyeg-XbfDGbLgPgedIFJVZSpjyrcyFjmYoIkjqWkGEUl6LMszzOasF5WCaYoUyxZExULI5KwbhETPiITPpcaY1zFutiY1ULdl-wsDh0XPQdF8eOvXDXC5tt2WJ1wv9K9cB9D3ixWJut1f7-_9J-AGJQit4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interfacial Ammonia Selectivity, Atmospheric Passivation, and Molecular Identification in Graphene-Nanopored Activated Carbon Molecular-Sieve Gas Sensors</title><source>ACS Publications</source><creator>Agbonlahor, Osazuwa G ; Muruganathan, Manoharan ; Ramaraj, Sankar G ; Wang, Zhongwang ; Hammam, Ahmed M.M ; Kareekunnan, Afsal ; Maki, Hisashi ; Hattori, Masashi ; Shimomai, Kenichi ; Mizuta, Hiroshi</creator><creatorcontrib>Agbonlahor, Osazuwa G ; Muruganathan, Manoharan ; Ramaraj, Sankar G ; Wang, Zhongwang ; Hammam, Ahmed M.M ; Kareekunnan, Afsal ; Maki, Hisashi ; Hattori, Masashi ; Shimomai, Kenichi ; Mizuta, Hiroshi</creatorcontrib><description>Graphene’s inherent nonselectivity and strong atmospheric doping render most graphene-based sensors unsuitable for atmospheric applications in environmental monitoring of pollutants and breath detection of biomarkers for noninvasive medical diagnosis. Hence, demonstrations of graphene’s gas sensitivity are often in inert environments such as nitrogen, consequently of little practical relevance. Herein, target gas sensing at the graphene–activated carbon interface of a graphene-nanopored activated carbon molecular-sieve sensor obtained via the postlithographic pyrolysis of Novolac resin residues on graphene nanoribbons is shown to simultaneously induce ammonia selectivity and atmospheric passivation of graphene. Consequently, 500 parts per trillion (ppt) ammonia sensitivity in atmospheric air is achieved with a response time of ∼3 s. The similar graphene and a-C workfunctions ensure that the ambipolar and gas-adsorption-induced charge transfer characteristics of pristine graphene are retained. Harnessing the van der Waals bonding memory and electrically tunable charge-transfer characteristics of the adsorbed molecules on the graphene channel, a molecular identification technique (charge neutrality point disparity) is developed and demonstrated to be suitable even at parts per billion (ppb) gas concentrations. The selectivity and atmospheric passivation induced by the graphene–activated carbon interface enable atmospheric applications of graphene sensors in environmental monitoring and noninvasive medical diagnosis.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c19138</identifier><identifier>PMID: 34914376</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-12, Vol.13 (51), p.61770-61779</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-bedcc738f94c5c742a6f5ca8e25b4b98958f4330b6e8ec7eb114d152b413cee63</citedby><cites>FETCH-LOGICAL-a396t-bedcc738f94c5c742a6f5ca8e25b4b98958f4330b6e8ec7eb114d152b413cee63</cites><orcidid>0000-0001-5421-5160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c19138$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c19138$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34914376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agbonlahor, Osazuwa G</creatorcontrib><creatorcontrib>Muruganathan, Manoharan</creatorcontrib><creatorcontrib>Ramaraj, Sankar G</creatorcontrib><creatorcontrib>Wang, Zhongwang</creatorcontrib><creatorcontrib>Hammam, Ahmed M.M</creatorcontrib><creatorcontrib>Kareekunnan, Afsal</creatorcontrib><creatorcontrib>Maki, Hisashi</creatorcontrib><creatorcontrib>Hattori, Masashi</creatorcontrib><creatorcontrib>Shimomai, Kenichi</creatorcontrib><creatorcontrib>Mizuta, Hiroshi</creatorcontrib><title>Interfacial Ammonia Selectivity, Atmospheric Passivation, and Molecular Identification in Graphene-Nanopored Activated Carbon Molecular-Sieve Gas Sensors</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Graphene’s inherent nonselectivity and strong atmospheric doping render most graphene-based sensors unsuitable for atmospheric applications in environmental monitoring of pollutants and breath detection of biomarkers for noninvasive medical diagnosis. Hence, demonstrations of graphene’s gas sensitivity are often in inert environments such as nitrogen, consequently of little practical relevance. Herein, target gas sensing at the graphene–activated carbon interface of a graphene-nanopored activated carbon molecular-sieve sensor obtained via the postlithographic pyrolysis of Novolac resin residues on graphene nanoribbons is shown to simultaneously induce ammonia selectivity and atmospheric passivation of graphene. Consequently, 500 parts per trillion (ppt) ammonia sensitivity in atmospheric air is achieved with a response time of ∼3 s. The similar graphene and a-C workfunctions ensure that the ambipolar and gas-adsorption-induced charge transfer characteristics of pristine graphene are retained. Harnessing the van der Waals bonding memory and electrically tunable charge-transfer characteristics of the adsorbed molecules on the graphene channel, a molecular identification technique (charge neutrality point disparity) is developed and demonstrated to be suitable even at parts per billion (ppb) gas concentrations. The selectivity and atmospheric passivation induced by the graphene–activated carbon interface enable atmospheric applications of graphene sensors in environmental monitoring and noninvasive medical diagnosis.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EoqWwZYm8Rk2JY-e1rCoolcpDKqyjiTMRrhK7stNK_RT-FpeU7lh5JJ9zZ3QJuWXhhIURewDpoFUTJlnOeHZGhiwXIsiiODo_zUIMyJVz6zBMeBTGl2TARc4ET5Mh-V7oDm0NUkFDp21rtAK6wgZlp3aq24_ptGuN23yhVZK-g3NqB50yekxBV_TFeHLbgKWLCnWnaiV_f6nSdG7BaxqDV9BmYyxWdHpIhc5PM7Clx05-sFK4QzoH57drZ6y7Jhc1NA5vju-IfD49fsyeg-XbfDGbLgPgedIFJVZSpjyrcyFjmYoIkjqWkGEUl6LMszzOasF5WCaYoUyxZExULI5KwbhETPiITPpcaY1zFutiY1ULdl-wsDh0XPQdF8eOvXDXC5tt2WJ1wv9K9cB9D3ixWJut1f7-_9J-AGJQit4</recordid><startdate>20211229</startdate><enddate>20211229</enddate><creator>Agbonlahor, Osazuwa G</creator><creator>Muruganathan, Manoharan</creator><creator>Ramaraj, Sankar G</creator><creator>Wang, Zhongwang</creator><creator>Hammam, Ahmed M.M</creator><creator>Kareekunnan, Afsal</creator><creator>Maki, Hisashi</creator><creator>Hattori, Masashi</creator><creator>Shimomai, Kenichi</creator><creator>Mizuta, Hiroshi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5421-5160</orcidid></search><sort><creationdate>20211229</creationdate><title>Interfacial Ammonia Selectivity, Atmospheric Passivation, and Molecular Identification in Graphene-Nanopored Activated Carbon Molecular-Sieve Gas Sensors</title><author>Agbonlahor, Osazuwa G ; Muruganathan, Manoharan ; Ramaraj, Sankar G ; Wang, Zhongwang ; Hammam, Ahmed M.M ; Kareekunnan, Afsal ; Maki, Hisashi ; Hattori, Masashi ; Shimomai, Kenichi ; Mizuta, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-bedcc738f94c5c742a6f5ca8e25b4b98958f4330b6e8ec7eb114d152b413cee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agbonlahor, Osazuwa G</creatorcontrib><creatorcontrib>Muruganathan, Manoharan</creatorcontrib><creatorcontrib>Ramaraj, Sankar G</creatorcontrib><creatorcontrib>Wang, Zhongwang</creatorcontrib><creatorcontrib>Hammam, Ahmed M.M</creatorcontrib><creatorcontrib>Kareekunnan, Afsal</creatorcontrib><creatorcontrib>Maki, Hisashi</creatorcontrib><creatorcontrib>Hattori, Masashi</creatorcontrib><creatorcontrib>Shimomai, Kenichi</creatorcontrib><creatorcontrib>Mizuta, Hiroshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agbonlahor, Osazuwa G</au><au>Muruganathan, Manoharan</au><au>Ramaraj, Sankar G</au><au>Wang, Zhongwang</au><au>Hammam, Ahmed M.M</au><au>Kareekunnan, Afsal</au><au>Maki, Hisashi</au><au>Hattori, Masashi</au><au>Shimomai, Kenichi</au><au>Mizuta, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Ammonia Selectivity, Atmospheric Passivation, and Molecular Identification in Graphene-Nanopored Activated Carbon Molecular-Sieve Gas Sensors</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-12-29</date><risdate>2021</risdate><volume>13</volume><issue>51</issue><spage>61770</spage><epage>61779</epage><pages>61770-61779</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Graphene’s inherent nonselectivity and strong atmospheric doping render most graphene-based sensors unsuitable for atmospheric applications in environmental monitoring of pollutants and breath detection of biomarkers for noninvasive medical diagnosis. Hence, demonstrations of graphene’s gas sensitivity are often in inert environments such as nitrogen, consequently of little practical relevance. Herein, target gas sensing at the graphene–activated carbon interface of a graphene-nanopored activated carbon molecular-sieve sensor obtained via the postlithographic pyrolysis of Novolac resin residues on graphene nanoribbons is shown to simultaneously induce ammonia selectivity and atmospheric passivation of graphene. Consequently, 500 parts per trillion (ppt) ammonia sensitivity in atmospheric air is achieved with a response time of ∼3 s. The similar graphene and a-C workfunctions ensure that the ambipolar and gas-adsorption-induced charge transfer characteristics of pristine graphene are retained. Harnessing the van der Waals bonding memory and electrically tunable charge-transfer characteristics of the adsorbed molecules on the graphene channel, a molecular identification technique (charge neutrality point disparity) is developed and demonstrated to be suitable even at parts per billion (ppb) gas concentrations. The selectivity and atmospheric passivation induced by the graphene–activated carbon interface enable atmospheric applications of graphene sensors in environmental monitoring and noninvasive medical diagnosis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34914376</pmid><doi>10.1021/acsami.1c19138</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5421-5160</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-12, Vol.13 (51), p.61770-61779
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_1c19138
source ACS Publications
subjects Surfaces, Interfaces, and Applications
title Interfacial Ammonia Selectivity, Atmospheric Passivation, and Molecular Identification in Graphene-Nanopored Activated Carbon Molecular-Sieve Gas Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Ammonia%20Selectivity,%20Atmospheric%20Passivation,%20and%20Molecular%20Identification%20in%20Graphene-Nanopored%20Activated%20Carbon%20Molecular-Sieve%20Gas%20Sensors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Agbonlahor,%20Osazuwa%20G&rft.date=2021-12-29&rft.volume=13&rft.issue=51&rft.spage=61770&rft.epage=61779&rft.pages=61770-61779&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c19138&rft_dat=%3Cacs_cross%3Ea003590863%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34914376&rfr_iscdi=true