O3-Type Na 2/3 Ni 1/3 Ti 2/3 O 2 Layered Oxide as a Stable and High-Rate Anode Material for Sodium Storage
Sodium-ion batteries (SIBs) are currently the most promising candidates for large-scale energy storage devices owing to their low cost and abundant resources. Titanium-based layered oxides have attracted widespread attention as promising anode materials due to delivering a safe potential of about 0....
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-01, Vol.14 (1), p.677-683 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 683 |
---|---|
container_issue | 1 |
container_start_page | 677 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Zhang, Si-Yuan Zhou, Ya-Nan Yu, Lianzheng Fan, Min Chen, Wan-Ping Xin, Sen Yin, Ya-Xia Xu, Sailong Guo, Yu-Guo |
description | Sodium-ion batteries (SIBs) are currently the most promising candidates for large-scale energy storage devices owing to their low cost and abundant resources. Titanium-based layered oxides have attracted widespread attention as promising anode materials due to delivering a safe potential of about 0.7 V (vs Na
/Na) and a small volume contraction during cycles; P2-type Ti-based layered oxides are typically reported, due to the challenging synthesis of the O3-type counterpart resulting from the high percentage of unstable Ti
. Herein, we report an anomalous O3-Na
Ni
Ti
O
layered oxide as an ultrastable and high-rate anode material for SIBs. The anode material delivers a reversible capacity of 112 mA h g
after 300 cycles at 0.1 C, a good capacity retention rate of 91% after 1400 cycles at 2 C, and, in particular, a capacity of 52 mA h g
even at a high rate of 20 C (1780 mA g
). Furthermore, the
X-ray diffraction monitoring reveals no phase transitions and almost zero strain both underlie the good long-cycle stability. The measured high apparent Na
diffusion coefficient (2.06 × 10
cm
s
) and the low migration energy barrier (0.59 eV) from density functional theory calculations are responsible for the superior rate capability. Our results promise advanced high-performance O3-type Ti-based layered oxides as promising anode materials toward application for SIBs. |
doi_str_mv | 10.1021/acsami.1c17554 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_1c17554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34939409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1079-1d4c63ce0e87a9e6f763a19697f141324bcb9b9e29fe301ae82eb1f460be88a13</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujEUSvHk2_wEKn7f7pkRAVE2QTwfNmtjuLJSxLWkjk27sKcnpv8t6bw4-xRxBDEBJGaAM2bggW0jjWV6wPRusok7G8vnite-wuhLUQiZIivmU9pY0yWpg-W-cqWh53xOfI5UjxuePQydL9XTmXfIZH8lTx_NtVxDFw5Is9lpvObys-dauv6AP3xMfbtsvfO-sdbnjder5oK3dounrrcUX37KbGTaCHsw7Y58vzcjKNZvnr22Q8iyyI1ERQaZsoS4KyFA0ldZooBJOYtAYNSurSlqY0JE1NSgBSJqmEWieipCxDUAM2PP21vg3BU13svGvQHwsQxS-04gStOEPrBk-nwe5QNlRd6v-U1A8gYGT9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>O3-Type Na 2/3 Ni 1/3 Ti 2/3 O 2 Layered Oxide as a Stable and High-Rate Anode Material for Sodium Storage</title><source>American Chemical Society Journals</source><creator>Zhang, Si-Yuan ; Zhou, Ya-Nan ; Yu, Lianzheng ; Fan, Min ; Chen, Wan-Ping ; Xin, Sen ; Yin, Ya-Xia ; Xu, Sailong ; Guo, Yu-Guo</creator><creatorcontrib>Zhang, Si-Yuan ; Zhou, Ya-Nan ; Yu, Lianzheng ; Fan, Min ; Chen, Wan-Ping ; Xin, Sen ; Yin, Ya-Xia ; Xu, Sailong ; Guo, Yu-Guo</creatorcontrib><description>Sodium-ion batteries (SIBs) are currently the most promising candidates for large-scale energy storage devices owing to their low cost and abundant resources. Titanium-based layered oxides have attracted widespread attention as promising anode materials due to delivering a safe potential of about 0.7 V (vs Na
/Na) and a small volume contraction during cycles; P2-type Ti-based layered oxides are typically reported, due to the challenging synthesis of the O3-type counterpart resulting from the high percentage of unstable Ti
. Herein, we report an anomalous O3-Na
Ni
Ti
O
layered oxide as an ultrastable and high-rate anode material for SIBs. The anode material delivers a reversible capacity of 112 mA h g
after 300 cycles at 0.1 C, a good capacity retention rate of 91% after 1400 cycles at 2 C, and, in particular, a capacity of 52 mA h g
even at a high rate of 20 C (1780 mA g
). Furthermore, the
X-ray diffraction monitoring reveals no phase transitions and almost zero strain both underlie the good long-cycle stability. The measured high apparent Na
diffusion coefficient (2.06 × 10
cm
s
) and the low migration energy barrier (0.59 eV) from density functional theory calculations are responsible for the superior rate capability. Our results promise advanced high-performance O3-type Ti-based layered oxides as promising anode materials toward application for SIBs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c17554</identifier><identifier>PMID: 34939409</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials & interfaces, 2022-01, Vol.14 (1), p.677-683</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1079-1d4c63ce0e87a9e6f763a19697f141324bcb9b9e29fe301ae82eb1f460be88a13</citedby><cites>FETCH-LOGICAL-c1079-1d4c63ce0e87a9e6f763a19697f141324bcb9b9e29fe301ae82eb1f460be88a13</cites><orcidid>0000-0002-0546-0626 ; 0000-0002-0983-9916 ; 0000-0002-1999-9323 ; 0000-0003-0322-8476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34939409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Si-Yuan</creatorcontrib><creatorcontrib>Zhou, Ya-Nan</creatorcontrib><creatorcontrib>Yu, Lianzheng</creatorcontrib><creatorcontrib>Fan, Min</creatorcontrib><creatorcontrib>Chen, Wan-Ping</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Yin, Ya-Xia</creatorcontrib><creatorcontrib>Xu, Sailong</creatorcontrib><creatorcontrib>Guo, Yu-Guo</creatorcontrib><title>O3-Type Na 2/3 Ni 1/3 Ti 2/3 O 2 Layered Oxide as a Stable and High-Rate Anode Material for Sodium Storage</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Sodium-ion batteries (SIBs) are currently the most promising candidates for large-scale energy storage devices owing to their low cost and abundant resources. Titanium-based layered oxides have attracted widespread attention as promising anode materials due to delivering a safe potential of about 0.7 V (vs Na
/Na) and a small volume contraction during cycles; P2-type Ti-based layered oxides are typically reported, due to the challenging synthesis of the O3-type counterpart resulting from the high percentage of unstable Ti
. Herein, we report an anomalous O3-Na
Ni
Ti
O
layered oxide as an ultrastable and high-rate anode material for SIBs. The anode material delivers a reversible capacity of 112 mA h g
after 300 cycles at 0.1 C, a good capacity retention rate of 91% after 1400 cycles at 2 C, and, in particular, a capacity of 52 mA h g
even at a high rate of 20 C (1780 mA g
). Furthermore, the
X-ray diffraction monitoring reveals no phase transitions and almost zero strain both underlie the good long-cycle stability. The measured high apparent Na
diffusion coefficient (2.06 × 10
cm
s
) and the low migration energy barrier (0.59 eV) from density functional theory calculations are responsible for the superior rate capability. Our results promise advanced high-performance O3-type Ti-based layered oxides as promising anode materials toward application for SIBs.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE9PAjEQxRujEUSvHk2_wEKn7f7pkRAVE2QTwfNmtjuLJSxLWkjk27sKcnpv8t6bw4-xRxBDEBJGaAM2bggW0jjWV6wPRusok7G8vnite-wuhLUQiZIivmU9pY0yWpg-W-cqWh53xOfI5UjxuePQydL9XTmXfIZH8lTx_NtVxDFw5Is9lpvObys-dauv6AP3xMfbtsvfO-sdbnjder5oK3dounrrcUX37KbGTaCHsw7Y58vzcjKNZvnr22Q8iyyI1ERQaZsoS4KyFA0ldZooBJOYtAYNSurSlqY0JE1NSgBSJqmEWieipCxDUAM2PP21vg3BU13svGvQHwsQxS-04gStOEPrBk-nwe5QNlRd6v-U1A8gYGT9</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Zhang, Si-Yuan</creator><creator>Zhou, Ya-Nan</creator><creator>Yu, Lianzheng</creator><creator>Fan, Min</creator><creator>Chen, Wan-Ping</creator><creator>Xin, Sen</creator><creator>Yin, Ya-Xia</creator><creator>Xu, Sailong</creator><creator>Guo, Yu-Guo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0546-0626</orcidid><orcidid>https://orcid.org/0000-0002-0983-9916</orcidid><orcidid>https://orcid.org/0000-0002-1999-9323</orcidid><orcidid>https://orcid.org/0000-0003-0322-8476</orcidid></search><sort><creationdate>20220112</creationdate><title>O3-Type Na 2/3 Ni 1/3 Ti 2/3 O 2 Layered Oxide as a Stable and High-Rate Anode Material for Sodium Storage</title><author>Zhang, Si-Yuan ; Zhou, Ya-Nan ; Yu, Lianzheng ; Fan, Min ; Chen, Wan-Ping ; Xin, Sen ; Yin, Ya-Xia ; Xu, Sailong ; Guo, Yu-Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1079-1d4c63ce0e87a9e6f763a19697f141324bcb9b9e29fe301ae82eb1f460be88a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Si-Yuan</creatorcontrib><creatorcontrib>Zhou, Ya-Nan</creatorcontrib><creatorcontrib>Yu, Lianzheng</creatorcontrib><creatorcontrib>Fan, Min</creatorcontrib><creatorcontrib>Chen, Wan-Ping</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Yin, Ya-Xia</creatorcontrib><creatorcontrib>Xu, Sailong</creatorcontrib><creatorcontrib>Guo, Yu-Guo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Si-Yuan</au><au>Zhou, Ya-Nan</au><au>Yu, Lianzheng</au><au>Fan, Min</au><au>Chen, Wan-Ping</au><au>Xin, Sen</au><au>Yin, Ya-Xia</au><au>Xu, Sailong</au><au>Guo, Yu-Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>O3-Type Na 2/3 Ni 1/3 Ti 2/3 O 2 Layered Oxide as a Stable and High-Rate Anode Material for Sodium Storage</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>677</spage><epage>683</epage><pages>677-683</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Sodium-ion batteries (SIBs) are currently the most promising candidates for large-scale energy storage devices owing to their low cost and abundant resources. Titanium-based layered oxides have attracted widespread attention as promising anode materials due to delivering a safe potential of about 0.7 V (vs Na
/Na) and a small volume contraction during cycles; P2-type Ti-based layered oxides are typically reported, due to the challenging synthesis of the O3-type counterpart resulting from the high percentage of unstable Ti
. Herein, we report an anomalous O3-Na
Ni
Ti
O
layered oxide as an ultrastable and high-rate anode material for SIBs. The anode material delivers a reversible capacity of 112 mA h g
after 300 cycles at 0.1 C, a good capacity retention rate of 91% after 1400 cycles at 2 C, and, in particular, a capacity of 52 mA h g
even at a high rate of 20 C (1780 mA g
). Furthermore, the
X-ray diffraction monitoring reveals no phase transitions and almost zero strain both underlie the good long-cycle stability. The measured high apparent Na
diffusion coefficient (2.06 × 10
cm
s
) and the low migration energy barrier (0.59 eV) from density functional theory calculations are responsible for the superior rate capability. Our results promise advanced high-performance O3-type Ti-based layered oxides as promising anode materials toward application for SIBs.</abstract><cop>United States</cop><pmid>34939409</pmid><doi>10.1021/acsami.1c17554</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0546-0626</orcidid><orcidid>https://orcid.org/0000-0002-0983-9916</orcidid><orcidid>https://orcid.org/0000-0002-1999-9323</orcidid><orcidid>https://orcid.org/0000-0003-0322-8476</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-01, Vol.14 (1), p.677-683 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_1c17554 |
source | American Chemical Society Journals |
title | O3-Type Na 2/3 Ni 1/3 Ti 2/3 O 2 Layered Oxide as a Stable and High-Rate Anode Material for Sodium Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=O3-Type%20Na%202/3%20Ni%201/3%20Ti%202/3%20O%202%20Layered%20Oxide%20as%20a%20Stable%20and%20High-Rate%20Anode%20Material%20for%20Sodium%20Storage&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Si-Yuan&rft.date=2022-01-12&rft.volume=14&rft.issue=1&rft.spage=677&rft.epage=683&rft.pages=677-683&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c17554&rft_dat=%3Cpubmed_cross%3E34939409%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34939409&rfr_iscdi=true |