Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes

Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-10, Vol.13 (39), p.46909-46918
Hauptverfasser: Chen, Xu-Lin, Tao, Xiao-Dong, Wei, Zhuangzhuang, Meng, Lingyi, Lin, Fu-Lin, Zhang, Dong-Hai, Jing, Yan-Yun, Lu, Can-Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46918
container_issue 39
container_start_page 46909
container_title ACS applied materials & interfaces
container_volume 13
creator Chen, Xu-Lin
Tao, Xiao-Dong
Wei, Zhuangzhuang
Meng, Lingyi
Lin, Fu-Lin
Zhang, Dong-Hai
Jing, Yan-Yun
Lu, Can-Zhong
description Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase separation, which hence degrade the efficiency and long-term stability of the OLEDs. Here, for the first time, we exploit the unique molecular configuration of the bimesitylene scaffold to design two highly efficient TADF amorphous molecular materials with excellent thermal and morphological stabilities. The twisted and rigid bimesitylene scaffold thwarts regular molecular packing and crystallization, thereby guaranteeing homogeneous and stable amorphous thin films. Meanwhile, the highly twisted geometry of the bimesitylene scaffold efficiently breaks the molecular conjugation and thus conserves the high energies of the lowest locally excited triplet states (3LE) above the lowest charge transfer states (1CT and 3CT), leading to small singlet-triplet energy splitting and fast reverse intersystem crossing. These TADF emitters exhibit high photoluminescence quantum yields of 0.90 and 0.69 and short TADF lifetimes of 4.94 and 1.44 μs in doped films, based on which the greenish-blue and greenish-yellow OLEDs achieve external quantum efficiencies of 23.2 and 16.2%, respectively, with small efficiency roll-off rates and perfect color stability.
doi_str_mv 10.1021/acsami.1c12188
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_1c12188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g98637933</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-d06ff980dfe968e0e9220aecae18aaf236ff2c663bb2602b55cfec08b3578cb43</originalsourceid><addsrcrecordid>eNp1kEtrwzAQhEVpoWnaa886F5xK8iPyMeTRFBLSQ3o2a3mVKNhWkOyC_30VEnrraYbd-ZZlCHnlbMKZ4O-gPDRmwhUXXMo7MuJ5kkRSpOL-zyfJI3ny_sRYFguWjsiwP6JroK4HOlOd-YEOK7rAGoagq7q3Dr3CViGdNdadj7b3dGtrVH0Njm5D3BmoPdXW0bU5HKMvdME3cEF27gCtUXQTFl20bEzXmfZAF8ZW6J_Jgw4kvtx0TL5Xy_18HW12H5_z2SaCmE27qGKZ1rlklcY8k8gwF4IBKkAuAbSIw1qoLIvLUmRMlGmqNComyzidSlUm8ZhMrneVs9471MXZmQbcUHBWXIorrsUVt-IC8HYFwrw42d614b3_wr8I53Or</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes</title><source>ACS Publications</source><creator>Chen, Xu-Lin ; Tao, Xiao-Dong ; Wei, Zhuangzhuang ; Meng, Lingyi ; Lin, Fu-Lin ; Zhang, Dong-Hai ; Jing, Yan-Yun ; Lu, Can-Zhong</creator><creatorcontrib>Chen, Xu-Lin ; Tao, Xiao-Dong ; Wei, Zhuangzhuang ; Meng, Lingyi ; Lin, Fu-Lin ; Zhang, Dong-Hai ; Jing, Yan-Yun ; Lu, Can-Zhong</creatorcontrib><description>Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase separation, which hence degrade the efficiency and long-term stability of the OLEDs. Here, for the first time, we exploit the unique molecular configuration of the bimesitylene scaffold to design two highly efficient TADF amorphous molecular materials with excellent thermal and morphological stabilities. The twisted and rigid bimesitylene scaffold thwarts regular molecular packing and crystallization, thereby guaranteeing homogeneous and stable amorphous thin films. Meanwhile, the highly twisted geometry of the bimesitylene scaffold efficiently breaks the molecular conjugation and thus conserves the high energies of the lowest locally excited triplet states (3LE) above the lowest charge transfer states (1CT and 3CT), leading to small singlet-triplet energy splitting and fast reverse intersystem crossing. These TADF emitters exhibit high photoluminescence quantum yields of 0.90 and 0.69 and short TADF lifetimes of 4.94 and 1.44 μs in doped films, based on which the greenish-blue and greenish-yellow OLEDs achieve external quantum efficiencies of 23.2 and 16.2%, respectively, with small efficiency roll-off rates and perfect color stability.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c12188</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Organic Electronic Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2021-10, Vol.13 (39), p.46909-46918</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-d06ff980dfe968e0e9220aecae18aaf236ff2c663bb2602b55cfec08b3578cb43</citedby><cites>FETCH-LOGICAL-a307t-d06ff980dfe968e0e9220aecae18aaf236ff2c663bb2602b55cfec08b3578cb43</cites><orcidid>0000-0002-8298-4132 ; 0000-0002-8985-5093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c12188$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c12188$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Chen, Xu-Lin</creatorcontrib><creatorcontrib>Tao, Xiao-Dong</creatorcontrib><creatorcontrib>Wei, Zhuangzhuang</creatorcontrib><creatorcontrib>Meng, Lingyi</creatorcontrib><creatorcontrib>Lin, Fu-Lin</creatorcontrib><creatorcontrib>Zhang, Dong-Hai</creatorcontrib><creatorcontrib>Jing, Yan-Yun</creatorcontrib><creatorcontrib>Lu, Can-Zhong</creatorcontrib><title>Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase separation, which hence degrade the efficiency and long-term stability of the OLEDs. Here, for the first time, we exploit the unique molecular configuration of the bimesitylene scaffold to design two highly efficient TADF amorphous molecular materials with excellent thermal and morphological stabilities. The twisted and rigid bimesitylene scaffold thwarts regular molecular packing and crystallization, thereby guaranteeing homogeneous and stable amorphous thin films. Meanwhile, the highly twisted geometry of the bimesitylene scaffold efficiently breaks the molecular conjugation and thus conserves the high energies of the lowest locally excited triplet states (3LE) above the lowest charge transfer states (1CT and 3CT), leading to small singlet-triplet energy splitting and fast reverse intersystem crossing. These TADF emitters exhibit high photoluminescence quantum yields of 0.90 and 0.69 and short TADF lifetimes of 4.94 and 1.44 μs in doped films, based on which the greenish-blue and greenish-yellow OLEDs achieve external quantum efficiencies of 23.2 and 16.2%, respectively, with small efficiency roll-off rates and perfect color stability.</description><subject>Organic Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtrwzAQhEVpoWnaa886F5xK8iPyMeTRFBLSQ3o2a3mVKNhWkOyC_30VEnrraYbd-ZZlCHnlbMKZ4O-gPDRmwhUXXMo7MuJ5kkRSpOL-zyfJI3ny_sRYFguWjsiwP6JroK4HOlOd-YEOK7rAGoagq7q3Dr3CViGdNdadj7b3dGtrVH0Njm5D3BmoPdXW0bU5HKMvdME3cEF27gCtUXQTFl20bEzXmfZAF8ZW6J_Jgw4kvtx0TL5Xy_18HW12H5_z2SaCmE27qGKZ1rlklcY8k8gwF4IBKkAuAbSIw1qoLIvLUmRMlGmqNComyzidSlUm8ZhMrneVs9471MXZmQbcUHBWXIorrsUVt-IC8HYFwrw42d614b3_wr8I53Or</recordid><startdate>20211006</startdate><enddate>20211006</enddate><creator>Chen, Xu-Lin</creator><creator>Tao, Xiao-Dong</creator><creator>Wei, Zhuangzhuang</creator><creator>Meng, Lingyi</creator><creator>Lin, Fu-Lin</creator><creator>Zhang, Dong-Hai</creator><creator>Jing, Yan-Yun</creator><creator>Lu, Can-Zhong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8298-4132</orcidid><orcidid>https://orcid.org/0000-0002-8985-5093</orcidid></search><sort><creationdate>20211006</creationdate><title>Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes</title><author>Chen, Xu-Lin ; Tao, Xiao-Dong ; Wei, Zhuangzhuang ; Meng, Lingyi ; Lin, Fu-Lin ; Zhang, Dong-Hai ; Jing, Yan-Yun ; Lu, Can-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-d06ff980dfe968e0e9220aecae18aaf236ff2c663bb2602b55cfec08b3578cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Organic Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xu-Lin</creatorcontrib><creatorcontrib>Tao, Xiao-Dong</creatorcontrib><creatorcontrib>Wei, Zhuangzhuang</creatorcontrib><creatorcontrib>Meng, Lingyi</creatorcontrib><creatorcontrib>Lin, Fu-Lin</creatorcontrib><creatorcontrib>Zhang, Dong-Hai</creatorcontrib><creatorcontrib>Jing, Yan-Yun</creatorcontrib><creatorcontrib>Lu, Can-Zhong</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xu-Lin</au><au>Tao, Xiao-Dong</au><au>Wei, Zhuangzhuang</au><au>Meng, Lingyi</au><au>Lin, Fu-Lin</au><au>Zhang, Dong-Hai</au><au>Jing, Yan-Yun</au><au>Lu, Can-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-10-06</date><risdate>2021</risdate><volume>13</volume><issue>39</issue><spage>46909</spage><epage>46918</epage><pages>46909-46918</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase separation, which hence degrade the efficiency and long-term stability of the OLEDs. Here, for the first time, we exploit the unique molecular configuration of the bimesitylene scaffold to design two highly efficient TADF amorphous molecular materials with excellent thermal and morphological stabilities. The twisted and rigid bimesitylene scaffold thwarts regular molecular packing and crystallization, thereby guaranteeing homogeneous and stable amorphous thin films. Meanwhile, the highly twisted geometry of the bimesitylene scaffold efficiently breaks the molecular conjugation and thus conserves the high energies of the lowest locally excited triplet states (3LE) above the lowest charge transfer states (1CT and 3CT), leading to small singlet-triplet energy splitting and fast reverse intersystem crossing. These TADF emitters exhibit high photoluminescence quantum yields of 0.90 and 0.69 and short TADF lifetimes of 4.94 and 1.44 μs in doped films, based on which the greenish-blue and greenish-yellow OLEDs achieve external quantum efficiencies of 23.2 and 16.2%, respectively, with small efficiency roll-off rates and perfect color stability.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c12188</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8298-4132</orcidid><orcidid>https://orcid.org/0000-0002-8985-5093</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-10, Vol.13 (39), p.46909-46918
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_1c12188
source ACS Publications
subjects Organic Electronic Devices
title Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20Activated%20Delayed%20Fluorescence%20Amorphous%20Molecular%20Materials%20for%20High-Performance%20Organic%20Light-Emitting%20Diodes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chen,%20Xu-Lin&rft.date=2021-10-06&rft.volume=13&rft.issue=39&rft.spage=46909&rft.epage=46918&rft.pages=46909-46918&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c12188&rft_dat=%3Cacs_cross%3Eg98637933%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true