Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes
Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase s...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-10, Vol.13 (39), p.46909-46918 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46918 |
---|---|
container_issue | 39 |
container_start_page | 46909 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Chen, Xu-Lin Tao, Xiao-Dong Wei, Zhuangzhuang Meng, Lingyi Lin, Fu-Lin Zhang, Dong-Hai Jing, Yan-Yun Lu, Can-Zhong |
description | Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase separation, which hence degrade the efficiency and long-term stability of the OLEDs. Here, for the first time, we exploit the unique molecular configuration of the bimesitylene scaffold to design two highly efficient TADF amorphous molecular materials with excellent thermal and morphological stabilities. The twisted and rigid bimesitylene scaffold thwarts regular molecular packing and crystallization, thereby guaranteeing homogeneous and stable amorphous thin films. Meanwhile, the highly twisted geometry of the bimesitylene scaffold efficiently breaks the molecular conjugation and thus conserves the high energies of the lowest locally excited triplet states (3LE) above the lowest charge transfer states (1CT and 3CT), leading to small singlet-triplet energy splitting and fast reverse intersystem crossing. These TADF emitters exhibit high photoluminescence quantum yields of 0.90 and 0.69 and short TADF lifetimes of 4.94 and 1.44 μs in doped films, based on which the greenish-blue and greenish-yellow OLEDs achieve external quantum efficiencies of 23.2 and 16.2%, respectively, with small efficiency roll-off rates and perfect color stability. |
doi_str_mv | 10.1021/acsami.1c12188 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_1c12188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g98637933</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-d06ff980dfe968e0e9220aecae18aaf236ff2c663bb2602b55cfec08b3578cb43</originalsourceid><addsrcrecordid>eNp1kEtrwzAQhEVpoWnaa886F5xK8iPyMeTRFBLSQ3o2a3mVKNhWkOyC_30VEnrraYbd-ZZlCHnlbMKZ4O-gPDRmwhUXXMo7MuJ5kkRSpOL-zyfJI3ny_sRYFguWjsiwP6JroK4HOlOd-YEOK7rAGoagq7q3Dr3CViGdNdadj7b3dGtrVH0Njm5D3BmoPdXW0bU5HKMvdME3cEF27gCtUXQTFl20bEzXmfZAF8ZW6J_Jgw4kvtx0TL5Xy_18HW12H5_z2SaCmE27qGKZ1rlklcY8k8gwF4IBKkAuAbSIw1qoLIvLUmRMlGmqNComyzidSlUm8ZhMrneVs9471MXZmQbcUHBWXIorrsUVt-IC8HYFwrw42d614b3_wr8I53Or</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes</title><source>ACS Publications</source><creator>Chen, Xu-Lin ; Tao, Xiao-Dong ; Wei, Zhuangzhuang ; Meng, Lingyi ; Lin, Fu-Lin ; Zhang, Dong-Hai ; Jing, Yan-Yun ; Lu, Can-Zhong</creator><creatorcontrib>Chen, Xu-Lin ; Tao, Xiao-Dong ; Wei, Zhuangzhuang ; Meng, Lingyi ; Lin, Fu-Lin ; Zhang, Dong-Hai ; Jing, Yan-Yun ; Lu, Can-Zhong</creatorcontrib><description>Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase separation, which hence degrade the efficiency and long-term stability of the OLEDs. Here, for the first time, we exploit the unique molecular configuration of the bimesitylene scaffold to design two highly efficient TADF amorphous molecular materials with excellent thermal and morphological stabilities. The twisted and rigid bimesitylene scaffold thwarts regular molecular packing and crystallization, thereby guaranteeing homogeneous and stable amorphous thin films. Meanwhile, the highly twisted geometry of the bimesitylene scaffold efficiently breaks the molecular conjugation and thus conserves the high energies of the lowest locally excited triplet states (3LE) above the lowest charge transfer states (1CT and 3CT), leading to small singlet-triplet energy splitting and fast reverse intersystem crossing. These TADF emitters exhibit high photoluminescence quantum yields of 0.90 and 0.69 and short TADF lifetimes of 4.94 and 1.44 μs in doped films, based on which the greenish-blue and greenish-yellow OLEDs achieve external quantum efficiencies of 23.2 and 16.2%, respectively, with small efficiency roll-off rates and perfect color stability.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c12188</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Organic Electronic Devices</subject><ispartof>ACS applied materials & interfaces, 2021-10, Vol.13 (39), p.46909-46918</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-d06ff980dfe968e0e9220aecae18aaf236ff2c663bb2602b55cfec08b3578cb43</citedby><cites>FETCH-LOGICAL-a307t-d06ff980dfe968e0e9220aecae18aaf236ff2c663bb2602b55cfec08b3578cb43</cites><orcidid>0000-0002-8298-4132 ; 0000-0002-8985-5093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c12188$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c12188$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Chen, Xu-Lin</creatorcontrib><creatorcontrib>Tao, Xiao-Dong</creatorcontrib><creatorcontrib>Wei, Zhuangzhuang</creatorcontrib><creatorcontrib>Meng, Lingyi</creatorcontrib><creatorcontrib>Lin, Fu-Lin</creatorcontrib><creatorcontrib>Zhang, Dong-Hai</creatorcontrib><creatorcontrib>Jing, Yan-Yun</creatorcontrib><creatorcontrib>Lu, Can-Zhong</creatorcontrib><title>Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase separation, which hence degrade the efficiency and long-term stability of the OLEDs. Here, for the first time, we exploit the unique molecular configuration of the bimesitylene scaffold to design two highly efficient TADF amorphous molecular materials with excellent thermal and morphological stabilities. The twisted and rigid bimesitylene scaffold thwarts regular molecular packing and crystallization, thereby guaranteeing homogeneous and stable amorphous thin films. Meanwhile, the highly twisted geometry of the bimesitylene scaffold efficiently breaks the molecular conjugation and thus conserves the high energies of the lowest locally excited triplet states (3LE) above the lowest charge transfer states (1CT and 3CT), leading to small singlet-triplet energy splitting and fast reverse intersystem crossing. These TADF emitters exhibit high photoluminescence quantum yields of 0.90 and 0.69 and short TADF lifetimes of 4.94 and 1.44 μs in doped films, based on which the greenish-blue and greenish-yellow OLEDs achieve external quantum efficiencies of 23.2 and 16.2%, respectively, with small efficiency roll-off rates and perfect color stability.</description><subject>Organic Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtrwzAQhEVpoWnaa886F5xK8iPyMeTRFBLSQ3o2a3mVKNhWkOyC_30VEnrraYbd-ZZlCHnlbMKZ4O-gPDRmwhUXXMo7MuJ5kkRSpOL-zyfJI3ny_sRYFguWjsiwP6JroK4HOlOd-YEOK7rAGoagq7q3Dr3CViGdNdadj7b3dGtrVH0Njm5D3BmoPdXW0bU5HKMvdME3cEF27gCtUXQTFl20bEzXmfZAF8ZW6J_Jgw4kvtx0TL5Xy_18HW12H5_z2SaCmE27qGKZ1rlklcY8k8gwF4IBKkAuAbSIw1qoLIvLUmRMlGmqNComyzidSlUm8ZhMrneVs9471MXZmQbcUHBWXIorrsUVt-IC8HYFwrw42d614b3_wr8I53Or</recordid><startdate>20211006</startdate><enddate>20211006</enddate><creator>Chen, Xu-Lin</creator><creator>Tao, Xiao-Dong</creator><creator>Wei, Zhuangzhuang</creator><creator>Meng, Lingyi</creator><creator>Lin, Fu-Lin</creator><creator>Zhang, Dong-Hai</creator><creator>Jing, Yan-Yun</creator><creator>Lu, Can-Zhong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8298-4132</orcidid><orcidid>https://orcid.org/0000-0002-8985-5093</orcidid></search><sort><creationdate>20211006</creationdate><title>Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes</title><author>Chen, Xu-Lin ; Tao, Xiao-Dong ; Wei, Zhuangzhuang ; Meng, Lingyi ; Lin, Fu-Lin ; Zhang, Dong-Hai ; Jing, Yan-Yun ; Lu, Can-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-d06ff980dfe968e0e9220aecae18aaf236ff2c663bb2602b55cfec08b3578cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Organic Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xu-Lin</creatorcontrib><creatorcontrib>Tao, Xiao-Dong</creatorcontrib><creatorcontrib>Wei, Zhuangzhuang</creatorcontrib><creatorcontrib>Meng, Lingyi</creatorcontrib><creatorcontrib>Lin, Fu-Lin</creatorcontrib><creatorcontrib>Zhang, Dong-Hai</creatorcontrib><creatorcontrib>Jing, Yan-Yun</creatorcontrib><creatorcontrib>Lu, Can-Zhong</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xu-Lin</au><au>Tao, Xiao-Dong</au><au>Wei, Zhuangzhuang</au><au>Meng, Lingyi</au><au>Lin, Fu-Lin</au><au>Zhang, Dong-Hai</au><au>Jing, Yan-Yun</au><au>Lu, Can-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-10-06</date><risdate>2021</risdate><volume>13</volume><issue>39</issue><spage>46909</spage><epage>46918</epage><pages>46909-46918</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase separation, which hence degrade the efficiency and long-term stability of the OLEDs. Here, for the first time, we exploit the unique molecular configuration of the bimesitylene scaffold to design two highly efficient TADF amorphous molecular materials with excellent thermal and morphological stabilities. The twisted and rigid bimesitylene scaffold thwarts regular molecular packing and crystallization, thereby guaranteeing homogeneous and stable amorphous thin films. Meanwhile, the highly twisted geometry of the bimesitylene scaffold efficiently breaks the molecular conjugation and thus conserves the high energies of the lowest locally excited triplet states (3LE) above the lowest charge transfer states (1CT and 3CT), leading to small singlet-triplet energy splitting and fast reverse intersystem crossing. These TADF emitters exhibit high photoluminescence quantum yields of 0.90 and 0.69 and short TADF lifetimes of 4.94 and 1.44 μs in doped films, based on which the greenish-blue and greenish-yellow OLEDs achieve external quantum efficiencies of 23.2 and 16.2%, respectively, with small efficiency roll-off rates and perfect color stability.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c12188</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8298-4132</orcidid><orcidid>https://orcid.org/0000-0002-8985-5093</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-10, Vol.13 (39), p.46909-46918 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_1c12188 |
source | ACS Publications |
subjects | Organic Electronic Devices |
title | Thermally Activated Delayed Fluorescence Amorphous Molecular Materials for High-Performance Organic Light-Emitting Diodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20Activated%20Delayed%20Fluorescence%20Amorphous%20Molecular%20Materials%20for%20High-Performance%20Organic%20Light-Emitting%20Diodes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chen,%20Xu-Lin&rft.date=2021-10-06&rft.volume=13&rft.issue=39&rft.spage=46909&rft.epage=46918&rft.pages=46909-46918&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c12188&rft_dat=%3Cacs_cross%3Eg98637933%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |