Multifunctional Ceramic Composite System for Simultaneous Thermal Protection and Electromagnetic Interference Shielding for Carbon Fiber-Reinforced Polymer Composites

Achieving a high electrical conductivity while maintaining a good thermal insulation is often contradictory in the material design for the goal of simultaneous thermal protection and electromagnetic interference shielding. The reason is that materials with a high electrical conductivity often pertai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-12, Vol.12 (52), p.58005-58017
Hauptverfasser: Jia, Yujun, Ajayi, Tosin D, Wahls, Benjamin H, Ramakrishnan, Kishore Ranganath, Ekkad, Srinath, Xu, Chengying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58017
container_issue 52
container_start_page 58005
container_title ACS applied materials & interfaces
container_volume 12
creator Jia, Yujun
Ajayi, Tosin D
Wahls, Benjamin H
Ramakrishnan, Kishore Ranganath
Ekkad, Srinath
Xu, Chengying
description Achieving a high electrical conductivity while maintaining a good thermal insulation is often contradictory in the material design for the goal of simultaneous thermal protection and electromagnetic interference shielding. The reason is that materials with a high electrical conductivity often pertain a high thermal conductivity. To address this challenge, this study reports a multifunctional ceramic composite system for carbon fiber-reinforced polymer composites. The fabricated multifunctional ceramic composite system has a multilayer structure. The polymer-derived SiCN ceramic reinforced with yttria-stabilized zirconia fibers serves as the thermal protection and impedance-matching layer, while the yttria-stabilized zirconia fiber-reinforced SiCN ceramic with carbon nanotubes provides the electromagnetic interference shielding. The thermal conductance of the multilayered ceramic composite is about 22.5% lower compared to that of the carbon fiber-reinforced polymer composites. The thermal insulation test during the steady-state condition shows that the hybrid composite can be used up to 300 °C while keeping the temperature reaching the surface of carbon fiber-reinforced polymer composites at around 167.8 °C. The flame test was used to characterize the thermal protection capability under transient conditions. The hybrid composite showed temperature differences of 72.9 and 280.7 °C during the low- and high-temperature settings, respectively. The average total shielding efficiency per thickness of the fabricated four-layered ceramic composite system was 21.45 dB/mm, which showed a high reflection-dominant electromagnetic interference shielding. The average total shielding efficiency per thickness of the eight-layered composite system was 16.57 dB/mm, revealing a high absorption-dominant electromagnetic interference shielding. Typical carbon fiber-reinforced polymer composites reveal a reflection-dominant electromagnetic interference shielding. The electrons can freely move in the percolated carbon nanotubes within the inner layers of the composite material, which provide the improved electromagnetic interference shielding ability. The movement of electrons was impeded by the top and bottom layers whose thermal conduction relies on the lattice vibrations, resulting in a satisfactory thermal insulation of the composite materials and impedance matching with the free space. Results of this study showed that materials with a good thermal insulation and electromagne
doi_str_mv 10.1021/acsami.0c17361
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c17361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470899490</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-dad95caa8e01b64d40e2a10b14057390d2dbf7894bb4b8dd5b9c163ea3f626673</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEoqWwZYm8RKAMfuXhJYpaqFRERcs68uOmdRXbg-0IzR_id-JphmGFhDe-tr5zdOxTVa8J3hBMyQepk3R2gzXpWEueVKdEcF73tKFPjzPnJ9WLlB4wbhnFzfPqhJVFSCNOq19fljnbafE62-DljAaIxVCjIbhtSDYDutmlDA5NIaIb6wouPYQlodt7iK4ormPI8ChH0ht0PpdDDE7eecjF6NJniBNE8Lp43VuYjfV3j3aDjKqoLqyCWH8D68ulBoOuw7xzEP9mSC-rZ5OcE7w67GfV94vz2-FzffX10-Xw8aqWjOFcG2lEo6XsARPVcsMxUEmwIhw3HRPYUKOmrhdcKa56YxolNGkZSDa1tG07dla9XX23MfxYIOXR2aRhntc3j5R3uBeCC1zQzYrqGFKKMI3baJ2Mu5Hgcd_NuHYzHropgjcH70U5MEf8TxkFeL8CP0GFKWm7_7Ijhkt9uCF9R8rEaKH7_6cHm-W-oSEsPhfpu1VaEo4PYYml-PSv2L8BBxW-vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470899490</pqid></control><display><type>article</type><title>Multifunctional Ceramic Composite System for Simultaneous Thermal Protection and Electromagnetic Interference Shielding for Carbon Fiber-Reinforced Polymer Composites</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>American Chemical Society Journals</source><creator>Jia, Yujun ; Ajayi, Tosin D ; Wahls, Benjamin H ; Ramakrishnan, Kishore Ranganath ; Ekkad, Srinath ; Xu, Chengying</creator><creatorcontrib>Jia, Yujun ; Ajayi, Tosin D ; Wahls, Benjamin H ; Ramakrishnan, Kishore Ranganath ; Ekkad, Srinath ; Xu, Chengying</creatorcontrib><description>Achieving a high electrical conductivity while maintaining a good thermal insulation is often contradictory in the material design for the goal of simultaneous thermal protection and electromagnetic interference shielding. The reason is that materials with a high electrical conductivity often pertain a high thermal conductivity. To address this challenge, this study reports a multifunctional ceramic composite system for carbon fiber-reinforced polymer composites. The fabricated multifunctional ceramic composite system has a multilayer structure. The polymer-derived SiCN ceramic reinforced with yttria-stabilized zirconia fibers serves as the thermal protection and impedance-matching layer, while the yttria-stabilized zirconia fiber-reinforced SiCN ceramic with carbon nanotubes provides the electromagnetic interference shielding. The thermal conductance of the multilayered ceramic composite is about 22.5% lower compared to that of the carbon fiber-reinforced polymer composites. The thermal insulation test during the steady-state condition shows that the hybrid composite can be used up to 300 °C while keeping the temperature reaching the surface of carbon fiber-reinforced polymer composites at around 167.8 °C. The flame test was used to characterize the thermal protection capability under transient conditions. The hybrid composite showed temperature differences of 72.9 and 280.7 °C during the low- and high-temperature settings, respectively. The average total shielding efficiency per thickness of the fabricated four-layered ceramic composite system was 21.45 dB/mm, which showed a high reflection-dominant electromagnetic interference shielding. The average total shielding efficiency per thickness of the eight-layered composite system was 16.57 dB/mm, revealing a high absorption-dominant electromagnetic interference shielding. Typical carbon fiber-reinforced polymer composites reveal a reflection-dominant electromagnetic interference shielding. The electrons can freely move in the percolated carbon nanotubes within the inner layers of the composite material, which provide the improved electromagnetic interference shielding ability. The movement of electrons was impeded by the top and bottom layers whose thermal conduction relies on the lattice vibrations, resulting in a satisfactory thermal insulation of the composite materials and impedance matching with the free space. Results of this study showed that materials with a good thermal insulation and electromagnetic interference shielding can be obtained simultaneously by confining the electron movement inside the materials and refraining their movement at the skin surface.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c17361</identifier><identifier>PMID: 33331159</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>ACS applied materials &amp; interfaces, 2020-12, Vol.12 (52), p.58005-58017</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>40</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000605187100032</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a330t-dad95caa8e01b64d40e2a10b14057390d2dbf7894bb4b8dd5b9c163ea3f626673</citedby><cites>FETCH-LOGICAL-a330t-dad95caa8e01b64d40e2a10b14057390d2dbf7894bb4b8dd5b9c163ea3f626673</cites><orcidid>0000-0002-9099-1906 ; 0000-0001-7301-0427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c17361$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c17361$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,28253,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33331159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Yujun</creatorcontrib><creatorcontrib>Ajayi, Tosin D</creatorcontrib><creatorcontrib>Wahls, Benjamin H</creatorcontrib><creatorcontrib>Ramakrishnan, Kishore Ranganath</creatorcontrib><creatorcontrib>Ekkad, Srinath</creatorcontrib><creatorcontrib>Xu, Chengying</creatorcontrib><title>Multifunctional Ceramic Composite System for Simultaneous Thermal Protection and Electromagnetic Interference Shielding for Carbon Fiber-Reinforced Polymer Composites</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS APPL MATER INTER</addtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Achieving a high electrical conductivity while maintaining a good thermal insulation is often contradictory in the material design for the goal of simultaneous thermal protection and electromagnetic interference shielding. The reason is that materials with a high electrical conductivity often pertain a high thermal conductivity. To address this challenge, this study reports a multifunctional ceramic composite system for carbon fiber-reinforced polymer composites. The fabricated multifunctional ceramic composite system has a multilayer structure. The polymer-derived SiCN ceramic reinforced with yttria-stabilized zirconia fibers serves as the thermal protection and impedance-matching layer, while the yttria-stabilized zirconia fiber-reinforced SiCN ceramic with carbon nanotubes provides the electromagnetic interference shielding. The thermal conductance of the multilayered ceramic composite is about 22.5% lower compared to that of the carbon fiber-reinforced polymer composites. The thermal insulation test during the steady-state condition shows that the hybrid composite can be used up to 300 °C while keeping the temperature reaching the surface of carbon fiber-reinforced polymer composites at around 167.8 °C. The flame test was used to characterize the thermal protection capability under transient conditions. The hybrid composite showed temperature differences of 72.9 and 280.7 °C during the low- and high-temperature settings, respectively. The average total shielding efficiency per thickness of the fabricated four-layered ceramic composite system was 21.45 dB/mm, which showed a high reflection-dominant electromagnetic interference shielding. The average total shielding efficiency per thickness of the eight-layered composite system was 16.57 dB/mm, revealing a high absorption-dominant electromagnetic interference shielding. Typical carbon fiber-reinforced polymer composites reveal a reflection-dominant electromagnetic interference shielding. The electrons can freely move in the percolated carbon nanotubes within the inner layers of the composite material, which provide the improved electromagnetic interference shielding ability. The movement of electrons was impeded by the top and bottom layers whose thermal conduction relies on the lattice vibrations, resulting in a satisfactory thermal insulation of the composite materials and impedance matching with the free space. Results of this study showed that materials with a good thermal insulation and electromagnetic interference shielding can be obtained simultaneously by confining the electron movement inside the materials and refraining their movement at the skin surface.</description><subject>Functional Inorganic Materials and Devices</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkUtv1DAUhSMEoqWwZYm8RKAMfuXhJYpaqFRERcs68uOmdRXbg-0IzR_id-JphmGFhDe-tr5zdOxTVa8J3hBMyQepk3R2gzXpWEueVKdEcF73tKFPjzPnJ9WLlB4wbhnFzfPqhJVFSCNOq19fljnbafE62-DljAaIxVCjIbhtSDYDutmlDA5NIaIb6wouPYQlodt7iK4ormPI8ChH0ht0PpdDDE7eecjF6NJniBNE8Lp43VuYjfV3j3aDjKqoLqyCWH8D68ulBoOuw7xzEP9mSC-rZ5OcE7w67GfV94vz2-FzffX10-Xw8aqWjOFcG2lEo6XsARPVcsMxUEmwIhw3HRPYUKOmrhdcKa56YxolNGkZSDa1tG07dla9XX23MfxYIOXR2aRhntc3j5R3uBeCC1zQzYrqGFKKMI3baJ2Mu5Hgcd_NuHYzHropgjcH70U5MEf8TxkFeL8CP0GFKWm7_7Ijhkt9uCF9R8rEaKH7_6cHm-W-oSEsPhfpu1VaEo4PYYml-PSv2L8BBxW-vA</recordid><startdate>20201230</startdate><enddate>20201230</enddate><creator>Jia, Yujun</creator><creator>Ajayi, Tosin D</creator><creator>Wahls, Benjamin H</creator><creator>Ramakrishnan, Kishore Ranganath</creator><creator>Ekkad, Srinath</creator><creator>Xu, Chengying</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9099-1906</orcidid><orcidid>https://orcid.org/0000-0001-7301-0427</orcidid></search><sort><creationdate>20201230</creationdate><title>Multifunctional Ceramic Composite System for Simultaneous Thermal Protection and Electromagnetic Interference Shielding for Carbon Fiber-Reinforced Polymer Composites</title><author>Jia, Yujun ; Ajayi, Tosin D ; Wahls, Benjamin H ; Ramakrishnan, Kishore Ranganath ; Ekkad, Srinath ; Xu, Chengying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-dad95caa8e01b64d40e2a10b14057390d2dbf7894bb4b8dd5b9c163ea3f626673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Functional Inorganic Materials and Devices</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yujun</creatorcontrib><creatorcontrib>Ajayi, Tosin D</creatorcontrib><creatorcontrib>Wahls, Benjamin H</creatorcontrib><creatorcontrib>Ramakrishnan, Kishore Ranganath</creatorcontrib><creatorcontrib>Ekkad, Srinath</creatorcontrib><creatorcontrib>Xu, Chengying</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Yujun</au><au>Ajayi, Tosin D</au><au>Wahls, Benjamin H</au><au>Ramakrishnan, Kishore Ranganath</au><au>Ekkad, Srinath</au><au>Xu, Chengying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional Ceramic Composite System for Simultaneous Thermal Protection and Electromagnetic Interference Shielding for Carbon Fiber-Reinforced Polymer Composites</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><stitle>ACS APPL MATER INTER</stitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-12-30</date><risdate>2020</risdate><volume>12</volume><issue>52</issue><spage>58005</spage><epage>58017</epage><pages>58005-58017</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Achieving a high electrical conductivity while maintaining a good thermal insulation is often contradictory in the material design for the goal of simultaneous thermal protection and electromagnetic interference shielding. The reason is that materials with a high electrical conductivity often pertain a high thermal conductivity. To address this challenge, this study reports a multifunctional ceramic composite system for carbon fiber-reinforced polymer composites. The fabricated multifunctional ceramic composite system has a multilayer structure. The polymer-derived SiCN ceramic reinforced with yttria-stabilized zirconia fibers serves as the thermal protection and impedance-matching layer, while the yttria-stabilized zirconia fiber-reinforced SiCN ceramic with carbon nanotubes provides the electromagnetic interference shielding. The thermal conductance of the multilayered ceramic composite is about 22.5% lower compared to that of the carbon fiber-reinforced polymer composites. The thermal insulation test during the steady-state condition shows that the hybrid composite can be used up to 300 °C while keeping the temperature reaching the surface of carbon fiber-reinforced polymer composites at around 167.8 °C. The flame test was used to characterize the thermal protection capability under transient conditions. The hybrid composite showed temperature differences of 72.9 and 280.7 °C during the low- and high-temperature settings, respectively. The average total shielding efficiency per thickness of the fabricated four-layered ceramic composite system was 21.45 dB/mm, which showed a high reflection-dominant electromagnetic interference shielding. The average total shielding efficiency per thickness of the eight-layered composite system was 16.57 dB/mm, revealing a high absorption-dominant electromagnetic interference shielding. Typical carbon fiber-reinforced polymer composites reveal a reflection-dominant electromagnetic interference shielding. The electrons can freely move in the percolated carbon nanotubes within the inner layers of the composite material, which provide the improved electromagnetic interference shielding ability. The movement of electrons was impeded by the top and bottom layers whose thermal conduction relies on the lattice vibrations, resulting in a satisfactory thermal insulation of the composite materials and impedance matching with the free space. Results of this study showed that materials with a good thermal insulation and electromagnetic interference shielding can be obtained simultaneously by confining the electron movement inside the materials and refraining their movement at the skin surface.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>33331159</pmid><doi>10.1021/acsami.0c17361</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9099-1906</orcidid><orcidid>https://orcid.org/0000-0001-7301-0427</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-12, Vol.12 (52), p.58005-58017
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_0c17361
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society Journals
subjects Functional Inorganic Materials and Devices
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Science & Technology
Science & Technology - Other Topics
Technology
title Multifunctional Ceramic Composite System for Simultaneous Thermal Protection and Electromagnetic Interference Shielding for Carbon Fiber-Reinforced Polymer Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20Ceramic%20Composite%20System%20for%20Simultaneous%20Thermal%20Protection%20and%20Electromagnetic%20Interference%20Shielding%20for%20Carbon%20Fiber-Reinforced%20Polymer%20Composites&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jia,%20Yujun&rft.date=2020-12-30&rft.volume=12&rft.issue=52&rft.spage=58005&rft.epage=58017&rft.pages=58005-58017&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c17361&rft_dat=%3Cproquest_cross%3E2470899490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470899490&rft_id=info:pmid/33331159&rfr_iscdi=true