Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects

Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se0) nanoparticles have emerged as a promising antimicrobial biom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-12, Vol.12 (50), p.55638-55648
Hauptverfasser: Vaquette, Cedryck, Bock, Nathalie, Tran, Phong A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55648
container_issue 50
container_start_page 55638
container_title ACS applied materials & interfaces
container_volume 12
creator Vaquette, Cedryck
Bock, Nathalie
Tran, Phong A
description Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se0) nanoparticles have emerged as a promising antimicrobial biomaterial without tissue cell toxicity, yet it remains unknown if their biological properties are from soluble Se ions or from direct cell–nanoparticle interactions. To answer this question, in this study, we developed a layered coating consisting of a Se nanoparticle layer underneath a micrometer-thick, biomimetic calcium phosphate (CaP) layer. We showed, for the first time, that the release of soluble HSe– ions from the Se nanoparticles strongly inhibited planktonic growth and biofilm formation of key bacteria, Staphylococcus aureus. The Se-CaP coating was found to support higher bone formation than the CaP-only coating in critical-size calvarial defects in rats; this finding could be directly attributed to the released soluble Se ions as the CaP layers in both groups had no detectable differences in the porous morphology, chemistry, and release of Ca or P. The Se-CaP coating was highly versatile and applicable to various surface chemistries as it formed through simple precipitation from aqueous solutions at room temperature and therefore could be promising in bone regeneration scaffolds or orthopedic implant applications.
doi_str_mv 10.1021/acsami.0c17017
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c17017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b92358926</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-8ee4e13ffc21e1b447f3384111ee719325f3a0e264d116f5de9b4118df19fb053</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhYnR-L91aVibtHKB6bRLnbZq0qiJup4wzMViZqCB6aKufAQT39AnkabanSvI4TvnXg4hZ8D6wDhcKh1Va_tMQ84g3yGHMJKyN-QZ393epTwgRzG-MTYQnGX75EAInjPJ5SH5nKkVBqzpletsa3XwlVUNfcIGnV229F45v1Chs7rB74-vQjV6LT_OfVzMVYe08Kqz7pV6R8WYPgbrupT2pJUxvqkjnbi5cjpJ194hnfrQJj7B1tEi2JS7nmbfkY7RoO7iCdkzqol4-nsek5fp5Lm47c0ebu6Kq1lPCcG63hBRIghjNAeESsrcCDGUAICYw0jwzAjFkA9kDTAwWY2jKr0OawMjU7FMHJP-Jjd9OcaAplwE26qwKoGV62rLTbXlb7XJcL4xLJZVi_UW_-syARcbIBnLN78MLu3_X9oPZVOGgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Vaquette, Cedryck ; Bock, Nathalie ; Tran, Phong A</creator><creatorcontrib>Vaquette, Cedryck ; Bock, Nathalie ; Tran, Phong A</creatorcontrib><description>Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se0) nanoparticles have emerged as a promising antimicrobial biomaterial without tissue cell toxicity, yet it remains unknown if their biological properties are from soluble Se ions or from direct cell–nanoparticle interactions. To answer this question, in this study, we developed a layered coating consisting of a Se nanoparticle layer underneath a micrometer-thick, biomimetic calcium phosphate (CaP) layer. We showed, for the first time, that the release of soluble HSe– ions from the Se nanoparticles strongly inhibited planktonic growth and biofilm formation of key bacteria, Staphylococcus aureus. The Se-CaP coating was found to support higher bone formation than the CaP-only coating in critical-size calvarial defects in rats; this finding could be directly attributed to the released soluble Se ions as the CaP layers in both groups had no detectable differences in the porous morphology, chemistry, and release of Ca or P. The Se-CaP coating was highly versatile and applicable to various surface chemistries as it formed through simple precipitation from aqueous solutions at room temperature and therefore could be promising in bone regeneration scaffolds or orthopedic implant applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c17017</identifier><identifier>PMID: 33270424</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Anti-Infective Agents - chemistry ; Anti-Infective Agents - pharmacology ; Biofilms - drug effects ; Biological and Medical Applications of Materials and Interfaces ; Bone Diseases - drug therapy ; Bone Diseases - pathology ; Bone Regeneration - drug effects ; Calcium Phosphates - chemistry ; Cell Adhesion - drug effects ; Cell Differentiation - drug effects ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Coated Materials, Biocompatible - therapeutic use ; Humans ; Male ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Nanoparticles - chemistry ; Osteogenesis - drug effects ; Polyesters - chemistry ; Printing, Three-Dimensional ; Rats ; Rats, Sprague-Dawley ; Selenium - chemistry ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - physiology</subject><ispartof>ACS applied materials &amp; interfaces, 2020-12, Vol.12 (50), p.55638-55648</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-8ee4e13ffc21e1b447f3384111ee719325f3a0e264d116f5de9b4118df19fb053</citedby><cites>FETCH-LOGICAL-a330t-8ee4e13ffc21e1b447f3384111ee719325f3a0e264d116f5de9b4118df19fb053</cites><orcidid>0000-0001-7937-4432 ; 0000-0003-2820-7399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c17017$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c17017$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33270424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaquette, Cedryck</creatorcontrib><creatorcontrib>Bock, Nathalie</creatorcontrib><creatorcontrib>Tran, Phong A</creatorcontrib><title>Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se0) nanoparticles have emerged as a promising antimicrobial biomaterial without tissue cell toxicity, yet it remains unknown if their biological properties are from soluble Se ions or from direct cell–nanoparticle interactions. To answer this question, in this study, we developed a layered coating consisting of a Se nanoparticle layer underneath a micrometer-thick, biomimetic calcium phosphate (CaP) layer. We showed, for the first time, that the release of soluble HSe– ions from the Se nanoparticles strongly inhibited planktonic growth and biofilm formation of key bacteria, Staphylococcus aureus. The Se-CaP coating was found to support higher bone formation than the CaP-only coating in critical-size calvarial defects in rats; this finding could be directly attributed to the released soluble Se ions as the CaP layers in both groups had no detectable differences in the porous morphology, chemistry, and release of Ca or P. The Se-CaP coating was highly versatile and applicable to various surface chemistries as it formed through simple precipitation from aqueous solutions at room temperature and therefore could be promising in bone regeneration scaffolds or orthopedic implant applications.</description><subject>Animals</subject><subject>Anti-Infective Agents - chemistry</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Biofilms - drug effects</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Bone Diseases - drug therapy</subject><subject>Bone Diseases - pathology</subject><subject>Bone Regeneration - drug effects</subject><subject>Calcium Phosphates - chemistry</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Coated Materials, Biocompatible - therapeutic use</subject><subject>Humans</subject><subject>Male</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Nanoparticles - chemistry</subject><subject>Osteogenesis - drug effects</subject><subject>Polyesters - chemistry</subject><subject>Printing, Three-Dimensional</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Selenium - chemistry</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - physiology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1OAyEUhYnR-L91aVibtHKB6bRLnbZq0qiJup4wzMViZqCB6aKufAQT39AnkabanSvI4TvnXg4hZ8D6wDhcKh1Va_tMQ84g3yGHMJKyN-QZ393epTwgRzG-MTYQnGX75EAInjPJ5SH5nKkVBqzpletsa3XwlVUNfcIGnV229F45v1Chs7rB74-vQjV6LT_OfVzMVYe08Kqz7pV6R8WYPgbrupT2pJUxvqkjnbi5cjpJ194hnfrQJj7B1tEi2JS7nmbfkY7RoO7iCdkzqol4-nsek5fp5Lm47c0ebu6Kq1lPCcG63hBRIghjNAeESsrcCDGUAICYw0jwzAjFkA9kDTAwWY2jKr0OawMjU7FMHJP-Jjd9OcaAplwE26qwKoGV62rLTbXlb7XJcL4xLJZVi_UW_-syARcbIBnLN78MLu3_X9oPZVOGgA</recordid><startdate>20201216</startdate><enddate>20201216</enddate><creator>Vaquette, Cedryck</creator><creator>Bock, Nathalie</creator><creator>Tran, Phong A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7937-4432</orcidid><orcidid>https://orcid.org/0000-0003-2820-7399</orcidid></search><sort><creationdate>20201216</creationdate><title>Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects</title><author>Vaquette, Cedryck ; Bock, Nathalie ; Tran, Phong A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-8ee4e13ffc21e1b447f3384111ee719325f3a0e264d116f5de9b4118df19fb053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Anti-Infective Agents - chemistry</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Biofilms - drug effects</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Bone Diseases - drug therapy</topic><topic>Bone Diseases - pathology</topic><topic>Bone Regeneration - drug effects</topic><topic>Calcium Phosphates - chemistry</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Coated Materials, Biocompatible - therapeutic use</topic><topic>Humans</topic><topic>Male</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Nanoparticles - chemistry</topic><topic>Osteogenesis - drug effects</topic><topic>Polyesters - chemistry</topic><topic>Printing, Three-Dimensional</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Selenium - chemistry</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaquette, Cedryck</creatorcontrib><creatorcontrib>Bock, Nathalie</creatorcontrib><creatorcontrib>Tran, Phong A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaquette, Cedryck</au><au>Bock, Nathalie</au><au>Tran, Phong A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-12-16</date><risdate>2020</risdate><volume>12</volume><issue>50</issue><spage>55638</spage><epage>55648</epage><pages>55638-55648</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se0) nanoparticles have emerged as a promising antimicrobial biomaterial without tissue cell toxicity, yet it remains unknown if their biological properties are from soluble Se ions or from direct cell–nanoparticle interactions. To answer this question, in this study, we developed a layered coating consisting of a Se nanoparticle layer underneath a micrometer-thick, biomimetic calcium phosphate (CaP) layer. We showed, for the first time, that the release of soluble HSe– ions from the Se nanoparticles strongly inhibited planktonic growth and biofilm formation of key bacteria, Staphylococcus aureus. The Se-CaP coating was found to support higher bone formation than the CaP-only coating in critical-size calvarial defects in rats; this finding could be directly attributed to the released soluble Se ions as the CaP layers in both groups had no detectable differences in the porous morphology, chemistry, and release of Ca or P. The Se-CaP coating was highly versatile and applicable to various surface chemistries as it formed through simple precipitation from aqueous solutions at room temperature and therefore could be promising in bone regeneration scaffolds or orthopedic implant applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33270424</pmid><doi>10.1021/acsami.0c17017</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7937-4432</orcidid><orcidid>https://orcid.org/0000-0003-2820-7399</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-12, Vol.12 (50), p.55638-55648
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_0c17017
source MEDLINE; American Chemical Society Journals
subjects Animals
Anti-Infective Agents - chemistry
Anti-Infective Agents - pharmacology
Biofilms - drug effects
Biological and Medical Applications of Materials and Interfaces
Bone Diseases - drug therapy
Bone Diseases - pathology
Bone Regeneration - drug effects
Calcium Phosphates - chemistry
Cell Adhesion - drug effects
Cell Differentiation - drug effects
Coated Materials, Biocompatible - chemistry
Coated Materials, Biocompatible - pharmacology
Coated Materials, Biocompatible - therapeutic use
Humans
Male
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Nanoparticles - chemistry
Osteogenesis - drug effects
Polyesters - chemistry
Printing, Three-Dimensional
Rats
Rats, Sprague-Dawley
Selenium - chemistry
Staphylococcus aureus - drug effects
Staphylococcus aureus - physiology
title Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layered%20Antimicrobial%20Selenium%20Nanoparticle%E2%80%93Calcium%20Phosphate%20Coating%20on%203D%20Printed%20Scaffolds%20Enhanced%20Bone%20Formation%20in%20Critical%20Size%20Defects&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Vaquette,%20Cedryck&rft.date=2020-12-16&rft.volume=12&rft.issue=50&rft.spage=55638&rft.epage=55648&rft.pages=55638-55648&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c17017&rft_dat=%3Cacs_cross%3Eb92358926%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33270424&rfr_iscdi=true