Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects
Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se0) nanoparticles have emerged as a promising antimicrobial biom...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-12, Vol.12 (50), p.55638-55648 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55648 |
---|---|
container_issue | 50 |
container_start_page | 55638 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Vaquette, Cedryck Bock, Nathalie Tran, Phong A |
description | Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se0) nanoparticles have emerged as a promising antimicrobial biomaterial without tissue cell toxicity, yet it remains unknown if their biological properties are from soluble Se ions or from direct cell–nanoparticle interactions. To answer this question, in this study, we developed a layered coating consisting of a Se nanoparticle layer underneath a micrometer-thick, biomimetic calcium phosphate (CaP) layer. We showed, for the first time, that the release of soluble HSe– ions from the Se nanoparticles strongly inhibited planktonic growth and biofilm formation of key bacteria, Staphylococcus aureus. The Se-CaP coating was found to support higher bone formation than the CaP-only coating in critical-size calvarial defects in rats; this finding could be directly attributed to the released soluble Se ions as the CaP layers in both groups had no detectable differences in the porous morphology, chemistry, and release of Ca or P. The Se-CaP coating was highly versatile and applicable to various surface chemistries as it formed through simple precipitation from aqueous solutions at room temperature and therefore could be promising in bone regeneration scaffolds or orthopedic implant applications. |
doi_str_mv | 10.1021/acsami.0c17017 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c17017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b92358926</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-8ee4e13ffc21e1b447f3384111ee719325f3a0e264d116f5de9b4118df19fb053</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhYnR-L91aVibtHKB6bRLnbZq0qiJup4wzMViZqCB6aKufAQT39AnkabanSvI4TvnXg4hZ8D6wDhcKh1Va_tMQ84g3yGHMJKyN-QZ393epTwgRzG-MTYQnGX75EAInjPJ5SH5nKkVBqzpletsa3XwlVUNfcIGnV229F45v1Chs7rB74-vQjV6LT_OfVzMVYe08Kqz7pV6R8WYPgbrupT2pJUxvqkjnbi5cjpJ194hnfrQJj7B1tEi2JS7nmbfkY7RoO7iCdkzqol4-nsek5fp5Lm47c0ebu6Kq1lPCcG63hBRIghjNAeESsrcCDGUAICYw0jwzAjFkA9kDTAwWY2jKr0OawMjU7FMHJP-Jjd9OcaAplwE26qwKoGV62rLTbXlb7XJcL4xLJZVi_UW_-syARcbIBnLN78MLu3_X9oPZVOGgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Vaquette, Cedryck ; Bock, Nathalie ; Tran, Phong A</creator><creatorcontrib>Vaquette, Cedryck ; Bock, Nathalie ; Tran, Phong A</creatorcontrib><description>Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se0) nanoparticles have emerged as a promising antimicrobial biomaterial without tissue cell toxicity, yet it remains unknown if their biological properties are from soluble Se ions or from direct cell–nanoparticle interactions. To answer this question, in this study, we developed a layered coating consisting of a Se nanoparticle layer underneath a micrometer-thick, biomimetic calcium phosphate (CaP) layer. We showed, for the first time, that the release of soluble HSe– ions from the Se nanoparticles strongly inhibited planktonic growth and biofilm formation of key bacteria, Staphylococcus aureus. The Se-CaP coating was found to support higher bone formation than the CaP-only coating in critical-size calvarial defects in rats; this finding could be directly attributed to the released soluble Se ions as the CaP layers in both groups had no detectable differences in the porous morphology, chemistry, and release of Ca or P. The Se-CaP coating was highly versatile and applicable to various surface chemistries as it formed through simple precipitation from aqueous solutions at room temperature and therefore could be promising in bone regeneration scaffolds or orthopedic implant applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c17017</identifier><identifier>PMID: 33270424</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Anti-Infective Agents - chemistry ; Anti-Infective Agents - pharmacology ; Biofilms - drug effects ; Biological and Medical Applications of Materials and Interfaces ; Bone Diseases - drug therapy ; Bone Diseases - pathology ; Bone Regeneration - drug effects ; Calcium Phosphates - chemistry ; Cell Adhesion - drug effects ; Cell Differentiation - drug effects ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Coated Materials, Biocompatible - therapeutic use ; Humans ; Male ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Nanoparticles - chemistry ; Osteogenesis - drug effects ; Polyesters - chemistry ; Printing, Three-Dimensional ; Rats ; Rats, Sprague-Dawley ; Selenium - chemistry ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - physiology</subject><ispartof>ACS applied materials & interfaces, 2020-12, Vol.12 (50), p.55638-55648</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-8ee4e13ffc21e1b447f3384111ee719325f3a0e264d116f5de9b4118df19fb053</citedby><cites>FETCH-LOGICAL-a330t-8ee4e13ffc21e1b447f3384111ee719325f3a0e264d116f5de9b4118df19fb053</cites><orcidid>0000-0001-7937-4432 ; 0000-0003-2820-7399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c17017$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c17017$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33270424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaquette, Cedryck</creatorcontrib><creatorcontrib>Bock, Nathalie</creatorcontrib><creatorcontrib>Tran, Phong A</creatorcontrib><title>Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se0) nanoparticles have emerged as a promising antimicrobial biomaterial without tissue cell toxicity, yet it remains unknown if their biological properties are from soluble Se ions or from direct cell–nanoparticle interactions. To answer this question, in this study, we developed a layered coating consisting of a Se nanoparticle layer underneath a micrometer-thick, biomimetic calcium phosphate (CaP) layer. We showed, for the first time, that the release of soluble HSe– ions from the Se nanoparticles strongly inhibited planktonic growth and biofilm formation of key bacteria, Staphylococcus aureus. The Se-CaP coating was found to support higher bone formation than the CaP-only coating in critical-size calvarial defects in rats; this finding could be directly attributed to the released soluble Se ions as the CaP layers in both groups had no detectable differences in the porous morphology, chemistry, and release of Ca or P. The Se-CaP coating was highly versatile and applicable to various surface chemistries as it formed through simple precipitation from aqueous solutions at room temperature and therefore could be promising in bone regeneration scaffolds or orthopedic implant applications.</description><subject>Animals</subject><subject>Anti-Infective Agents - chemistry</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Biofilms - drug effects</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Bone Diseases - drug therapy</subject><subject>Bone Diseases - pathology</subject><subject>Bone Regeneration - drug effects</subject><subject>Calcium Phosphates - chemistry</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Coated Materials, Biocompatible - therapeutic use</subject><subject>Humans</subject><subject>Male</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Nanoparticles - chemistry</subject><subject>Osteogenesis - drug effects</subject><subject>Polyesters - chemistry</subject><subject>Printing, Three-Dimensional</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Selenium - chemistry</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - physiology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1OAyEUhYnR-L91aVibtHKB6bRLnbZq0qiJup4wzMViZqCB6aKufAQT39AnkabanSvI4TvnXg4hZ8D6wDhcKh1Va_tMQ84g3yGHMJKyN-QZ393epTwgRzG-MTYQnGX75EAInjPJ5SH5nKkVBqzpletsa3XwlVUNfcIGnV229F45v1Chs7rB74-vQjV6LT_OfVzMVYe08Kqz7pV6R8WYPgbrupT2pJUxvqkjnbi5cjpJ194hnfrQJj7B1tEi2JS7nmbfkY7RoO7iCdkzqol4-nsek5fp5Lm47c0ebu6Kq1lPCcG63hBRIghjNAeESsrcCDGUAICYw0jwzAjFkA9kDTAwWY2jKr0OawMjU7FMHJP-Jjd9OcaAplwE26qwKoGV62rLTbXlb7XJcL4xLJZVi_UW_-syARcbIBnLN78MLu3_X9oPZVOGgA</recordid><startdate>20201216</startdate><enddate>20201216</enddate><creator>Vaquette, Cedryck</creator><creator>Bock, Nathalie</creator><creator>Tran, Phong A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7937-4432</orcidid><orcidid>https://orcid.org/0000-0003-2820-7399</orcidid></search><sort><creationdate>20201216</creationdate><title>Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects</title><author>Vaquette, Cedryck ; Bock, Nathalie ; Tran, Phong A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-8ee4e13ffc21e1b447f3384111ee719325f3a0e264d116f5de9b4118df19fb053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Anti-Infective Agents - chemistry</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Biofilms - drug effects</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Bone Diseases - drug therapy</topic><topic>Bone Diseases - pathology</topic><topic>Bone Regeneration - drug effects</topic><topic>Calcium Phosphates - chemistry</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Coated Materials, Biocompatible - therapeutic use</topic><topic>Humans</topic><topic>Male</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Nanoparticles - chemistry</topic><topic>Osteogenesis - drug effects</topic><topic>Polyesters - chemistry</topic><topic>Printing, Three-Dimensional</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Selenium - chemistry</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaquette, Cedryck</creatorcontrib><creatorcontrib>Bock, Nathalie</creatorcontrib><creatorcontrib>Tran, Phong A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaquette, Cedryck</au><au>Bock, Nathalie</au><au>Tran, Phong A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-12-16</date><risdate>2020</risdate><volume>12</volume><issue>50</issue><spage>55638</spage><epage>55648</epage><pages>55638-55648</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se0) nanoparticles have emerged as a promising antimicrobial biomaterial without tissue cell toxicity, yet it remains unknown if their biological properties are from soluble Se ions or from direct cell–nanoparticle interactions. To answer this question, in this study, we developed a layered coating consisting of a Se nanoparticle layer underneath a micrometer-thick, biomimetic calcium phosphate (CaP) layer. We showed, for the first time, that the release of soluble HSe– ions from the Se nanoparticles strongly inhibited planktonic growth and biofilm formation of key bacteria, Staphylococcus aureus. The Se-CaP coating was found to support higher bone formation than the CaP-only coating in critical-size calvarial defects in rats; this finding could be directly attributed to the released soluble Se ions as the CaP layers in both groups had no detectable differences in the porous morphology, chemistry, and release of Ca or P. The Se-CaP coating was highly versatile and applicable to various surface chemistries as it formed through simple precipitation from aqueous solutions at room temperature and therefore could be promising in bone regeneration scaffolds or orthopedic implant applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33270424</pmid><doi>10.1021/acsami.0c17017</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7937-4432</orcidid><orcidid>https://orcid.org/0000-0003-2820-7399</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-12, Vol.12 (50), p.55638-55648 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_0c17017 |
source | MEDLINE; American Chemical Society Journals |
subjects | Animals Anti-Infective Agents - chemistry Anti-Infective Agents - pharmacology Biofilms - drug effects Biological and Medical Applications of Materials and Interfaces Bone Diseases - drug therapy Bone Diseases - pathology Bone Regeneration - drug effects Calcium Phosphates - chemistry Cell Adhesion - drug effects Cell Differentiation - drug effects Coated Materials, Biocompatible - chemistry Coated Materials, Biocompatible - pharmacology Coated Materials, Biocompatible - therapeutic use Humans Male Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Nanoparticles - chemistry Osteogenesis - drug effects Polyesters - chemistry Printing, Three-Dimensional Rats Rats, Sprague-Dawley Selenium - chemistry Staphylococcus aureus - drug effects Staphylococcus aureus - physiology |
title | Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layered%20Antimicrobial%20Selenium%20Nanoparticle%E2%80%93Calcium%20Phosphate%20Coating%20on%203D%20Printed%20Scaffolds%20Enhanced%20Bone%20Formation%20in%20Critical%20Size%20Defects&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Vaquette,%20Cedryck&rft.date=2020-12-16&rft.volume=12&rft.issue=50&rft.spage=55638&rft.epage=55648&rft.pages=55638-55648&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c17017&rft_dat=%3Cacs_cross%3Eb92358926%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33270424&rfr_iscdi=true |