Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization

Biosourced nanoparticles have a range of desirable properties for therapeutic applications, including biodegradability and low immunogenicity. Glycogen, a natural polysaccharide nanoparticle, has garnered much interest as a component of advanced therapeutic materials. However, functionalizing glycog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-09, Vol.12 (35), p.38976-38988
Hauptverfasser: Besford, Quinn A, Weiss, Alessia C. G, Schubert, Jonas, Ryan, Timothy M, Maitz, Manfred F, Tomanin, Pietro Pacchin, Savioli, Marco, Werner, Carsten, Fery, Andreas, Caruso, Frank, Cavalieri, Francesca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38988
container_issue 35
container_start_page 38976
container_title ACS applied materials & interfaces
container_volume 12
creator Besford, Quinn A
Weiss, Alessia C. G
Schubert, Jonas
Ryan, Timothy M
Maitz, Manfred F
Tomanin, Pietro Pacchin
Savioli, Marco
Werner, Carsten
Fery, Andreas
Caruso, Frank
Cavalieri, Francesca
description Biosourced nanoparticles have a range of desirable properties for therapeutic applications, including biodegradability and low immunogenicity. Glycogen, a natural polysaccharide nanoparticle, has garnered much interest as a component of advanced therapeutic materials. However, functionalizing glycogen for use as a therapeutic material typically involves synthetic approaches that can negatively affect the intrinsic physiological properties of glycogen. Herein, the protein component of glycogen is examined as an anchor point for the photopolymerization of functional poly­(N-isopropylacrylamide) (PNIPAM) polymers. Oyster glycogen (OG) nanoparticles partially degrade to smaller spherical particles in the presence of protease enzymes, reflecting a population of surface-bound proteins on the polysaccharide. The grafting of PNIPAM to the native protein component of OG produces OG-PNIPAM nanoparticles of ∼45 nm in diameter and 6.2 MDa in molecular weight. PNIPAM endows the nanoparticles with temperature-responsive aggregation properties that are controllable and reversible and that can be removed by the biodegradation of the protein. The OG-PNIPAM nanoparticles retain the native biodegradability of glycogen. Whole blood incubation assays revealed that the OG-PNIPAM nanoparticles have a low cell association and inflammatory response similar to that of OG. The reported strategy provides functionalized glycogen nanomaterials that retain their inherent biodegradability and low immune cell association.
doi_str_mv 10.1021/acsami.0c10699
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c10699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c101119415</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-a0abd9382e394d1ec925b43efdb96a5b397fa0c9d15593972af2b536ef0a205c3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk6vHiVnoTM_mq7xNoabwnA76MFTeU0T7WiTknSH-debUd1NePC-D77fB98PQreUTClh9AFUgLaeEkVJJuUZGlOZpknOBDs_6TQdoasQdoRknBFxiUac5URImo_Rx9a7XtcWL1zbOattj53Bm0Potcer5qDcp7b4FazrwPe1anR4xHMbR305j7eujgkT1XJvVV87C039DUdxjS4MNEHf_O4Jel8-vS2ek_Vm9bKYrxPgM9InQKCsJM-Z5jKtqFaSiTLl2lSlzECUXM4MECUrKoSMBwPDSsEzbQjEMopP0HT4q7wLwWtTdL5uwR8KSoojo2JgVPwyioG7IdDty1ZXJ_sflGi4HwwxWOzc3sdS4b9vP43jcsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Besford, Quinn A ; Weiss, Alessia C. G ; Schubert, Jonas ; Ryan, Timothy M ; Maitz, Manfred F ; Tomanin, Pietro Pacchin ; Savioli, Marco ; Werner, Carsten ; Fery, Andreas ; Caruso, Frank ; Cavalieri, Francesca</creator><creatorcontrib>Besford, Quinn A ; Weiss, Alessia C. G ; Schubert, Jonas ; Ryan, Timothy M ; Maitz, Manfred F ; Tomanin, Pietro Pacchin ; Savioli, Marco ; Werner, Carsten ; Fery, Andreas ; Caruso, Frank ; Cavalieri, Francesca</creatorcontrib><description>Biosourced nanoparticles have a range of desirable properties for therapeutic applications, including biodegradability and low immunogenicity. Glycogen, a natural polysaccharide nanoparticle, has garnered much interest as a component of advanced therapeutic materials. However, functionalizing glycogen for use as a therapeutic material typically involves synthetic approaches that can negatively affect the intrinsic physiological properties of glycogen. Herein, the protein component of glycogen is examined as an anchor point for the photopolymerization of functional poly­(N-isopropylacrylamide) (PNIPAM) polymers. Oyster glycogen (OG) nanoparticles partially degrade to smaller spherical particles in the presence of protease enzymes, reflecting a population of surface-bound proteins on the polysaccharide. The grafting of PNIPAM to the native protein component of OG produces OG-PNIPAM nanoparticles of ∼45 nm in diameter and 6.2 MDa in molecular weight. PNIPAM endows the nanoparticles with temperature-responsive aggregation properties that are controllable and reversible and that can be removed by the biodegradation of the protein. The OG-PNIPAM nanoparticles retain the native biodegradability of glycogen. Whole blood incubation assays revealed that the OG-PNIPAM nanoparticles have a low cell association and inflammatory response similar to that of OG. The reported strategy provides functionalized glycogen nanomaterials that retain their inherent biodegradability and low immune cell association.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c10699</identifier><identifier>PMID: 32805918</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acrylic Resins - chemistry ; Amylases - metabolism ; Animals ; Biological and Medical Applications of Materials and Interfaces ; Glycogen - chemistry ; Glycogen - metabolism ; Humans ; Liver - metabolism ; Nanoparticles - chemistry ; Particle Size ; Peptide Hydrolases - metabolism ; Rats ; Surface Properties ; Temperature</subject><ispartof>ACS applied materials &amp; interfaces, 2020-09, Vol.12 (35), p.38976-38988</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-a0abd9382e394d1ec925b43efdb96a5b397fa0c9d15593972af2b536ef0a205c3</citedby><cites>FETCH-LOGICAL-a370t-a0abd9382e394d1ec925b43efdb96a5b397fa0c9d15593972af2b536ef0a205c3</cites><orcidid>0000-0001-6692-3762 ; 0000-0002-1779-9176 ; 0000-0002-5728-9779 ; 0000-0002-5547-3863 ; 0000-0001-5391-5069 ; 0000-0002-0197-497X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c10699$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c10699$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32805918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Besford, Quinn A</creatorcontrib><creatorcontrib>Weiss, Alessia C. G</creatorcontrib><creatorcontrib>Schubert, Jonas</creatorcontrib><creatorcontrib>Ryan, Timothy M</creatorcontrib><creatorcontrib>Maitz, Manfred F</creatorcontrib><creatorcontrib>Tomanin, Pietro Pacchin</creatorcontrib><creatorcontrib>Savioli, Marco</creatorcontrib><creatorcontrib>Werner, Carsten</creatorcontrib><creatorcontrib>Fery, Andreas</creatorcontrib><creatorcontrib>Caruso, Frank</creatorcontrib><creatorcontrib>Cavalieri, Francesca</creatorcontrib><title>Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Biosourced nanoparticles have a range of desirable properties for therapeutic applications, including biodegradability and low immunogenicity. Glycogen, a natural polysaccharide nanoparticle, has garnered much interest as a component of advanced therapeutic materials. However, functionalizing glycogen for use as a therapeutic material typically involves synthetic approaches that can negatively affect the intrinsic physiological properties of glycogen. Herein, the protein component of glycogen is examined as an anchor point for the photopolymerization of functional poly­(N-isopropylacrylamide) (PNIPAM) polymers. Oyster glycogen (OG) nanoparticles partially degrade to smaller spherical particles in the presence of protease enzymes, reflecting a population of surface-bound proteins on the polysaccharide. The grafting of PNIPAM to the native protein component of OG produces OG-PNIPAM nanoparticles of ∼45 nm in diameter and 6.2 MDa in molecular weight. PNIPAM endows the nanoparticles with temperature-responsive aggregation properties that are controllable and reversible and that can be removed by the biodegradation of the protein. The OG-PNIPAM nanoparticles retain the native biodegradability of glycogen. Whole blood incubation assays revealed that the OG-PNIPAM nanoparticles have a low cell association and inflammatory response similar to that of OG. The reported strategy provides functionalized glycogen nanomaterials that retain their inherent biodegradability and low immune cell association.</description><subject>Acrylic Resins - chemistry</subject><subject>Amylases - metabolism</subject><subject>Animals</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Glycogen - chemistry</subject><subject>Glycogen - metabolism</subject><subject>Humans</subject><subject>Liver - metabolism</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Rats</subject><subject>Surface Properties</subject><subject>Temperature</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4Mobk6vHiVnoTM_mq7xNoabwnA76MFTeU0T7WiTknSH-debUd1NePC-D77fB98PQreUTClh9AFUgLaeEkVJJuUZGlOZpknOBDs_6TQdoasQdoRknBFxiUac5URImo_Rx9a7XtcWL1zbOattj53Bm0Potcer5qDcp7b4FazrwPe1anR4xHMbR305j7eujgkT1XJvVV87C039DUdxjS4MNEHf_O4Jel8-vS2ek_Vm9bKYrxPgM9InQKCsJM-Z5jKtqFaSiTLl2lSlzECUXM4MECUrKoSMBwPDSsEzbQjEMopP0HT4q7wLwWtTdL5uwR8KSoojo2JgVPwyioG7IdDty1ZXJ_sflGi4HwwxWOzc3sdS4b9vP43jcsc</recordid><startdate>20200902</startdate><enddate>20200902</enddate><creator>Besford, Quinn A</creator><creator>Weiss, Alessia C. G</creator><creator>Schubert, Jonas</creator><creator>Ryan, Timothy M</creator><creator>Maitz, Manfred F</creator><creator>Tomanin, Pietro Pacchin</creator><creator>Savioli, Marco</creator><creator>Werner, Carsten</creator><creator>Fery, Andreas</creator><creator>Caruso, Frank</creator><creator>Cavalieri, Francesca</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6692-3762</orcidid><orcidid>https://orcid.org/0000-0002-1779-9176</orcidid><orcidid>https://orcid.org/0000-0002-5728-9779</orcidid><orcidid>https://orcid.org/0000-0002-5547-3863</orcidid><orcidid>https://orcid.org/0000-0001-5391-5069</orcidid><orcidid>https://orcid.org/0000-0002-0197-497X</orcidid></search><sort><creationdate>20200902</creationdate><title>Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization</title><author>Besford, Quinn A ; Weiss, Alessia C. G ; Schubert, Jonas ; Ryan, Timothy M ; Maitz, Manfred F ; Tomanin, Pietro Pacchin ; Savioli, Marco ; Werner, Carsten ; Fery, Andreas ; Caruso, Frank ; Cavalieri, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-a0abd9382e394d1ec925b43efdb96a5b397fa0c9d15593972af2b536ef0a205c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Amylases - metabolism</topic><topic>Animals</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Glycogen - chemistry</topic><topic>Glycogen - metabolism</topic><topic>Humans</topic><topic>Liver - metabolism</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Rats</topic><topic>Surface Properties</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besford, Quinn A</creatorcontrib><creatorcontrib>Weiss, Alessia C. G</creatorcontrib><creatorcontrib>Schubert, Jonas</creatorcontrib><creatorcontrib>Ryan, Timothy M</creatorcontrib><creatorcontrib>Maitz, Manfred F</creatorcontrib><creatorcontrib>Tomanin, Pietro Pacchin</creatorcontrib><creatorcontrib>Savioli, Marco</creatorcontrib><creatorcontrib>Werner, Carsten</creatorcontrib><creatorcontrib>Fery, Andreas</creatorcontrib><creatorcontrib>Caruso, Frank</creatorcontrib><creatorcontrib>Cavalieri, Francesca</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besford, Quinn A</au><au>Weiss, Alessia C. G</au><au>Schubert, Jonas</au><au>Ryan, Timothy M</au><au>Maitz, Manfred F</au><au>Tomanin, Pietro Pacchin</au><au>Savioli, Marco</au><au>Werner, Carsten</au><au>Fery, Andreas</au><au>Caruso, Frank</au><au>Cavalieri, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-09-02</date><risdate>2020</risdate><volume>12</volume><issue>35</issue><spage>38976</spage><epage>38988</epage><pages>38976-38988</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Biosourced nanoparticles have a range of desirable properties for therapeutic applications, including biodegradability and low immunogenicity. Glycogen, a natural polysaccharide nanoparticle, has garnered much interest as a component of advanced therapeutic materials. However, functionalizing glycogen for use as a therapeutic material typically involves synthetic approaches that can negatively affect the intrinsic physiological properties of glycogen. Herein, the protein component of glycogen is examined as an anchor point for the photopolymerization of functional poly­(N-isopropylacrylamide) (PNIPAM) polymers. Oyster glycogen (OG) nanoparticles partially degrade to smaller spherical particles in the presence of protease enzymes, reflecting a population of surface-bound proteins on the polysaccharide. The grafting of PNIPAM to the native protein component of OG produces OG-PNIPAM nanoparticles of ∼45 nm in diameter and 6.2 MDa in molecular weight. PNIPAM endows the nanoparticles with temperature-responsive aggregation properties that are controllable and reversible and that can be removed by the biodegradation of the protein. The OG-PNIPAM nanoparticles retain the native biodegradability of glycogen. Whole blood incubation assays revealed that the OG-PNIPAM nanoparticles have a low cell association and inflammatory response similar to that of OG. The reported strategy provides functionalized glycogen nanomaterials that retain their inherent biodegradability and low immune cell association.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32805918</pmid><doi>10.1021/acsami.0c10699</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6692-3762</orcidid><orcidid>https://orcid.org/0000-0002-1779-9176</orcidid><orcidid>https://orcid.org/0000-0002-5728-9779</orcidid><orcidid>https://orcid.org/0000-0002-5547-3863</orcidid><orcidid>https://orcid.org/0000-0001-5391-5069</orcidid><orcidid>https://orcid.org/0000-0002-0197-497X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-09, Vol.12 (35), p.38976-38988
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_0c10699
source American Chemical Society; MEDLINE
subjects Acrylic Resins - chemistry
Amylases - metabolism
Animals
Biological and Medical Applications of Materials and Interfaces
Glycogen - chemistry
Glycogen - metabolism
Humans
Liver - metabolism
Nanoparticles - chemistry
Particle Size
Peptide Hydrolases - metabolism
Rats
Surface Properties
Temperature
title Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Component%20of%20Oyster%20Glycogen%20Nanoparticles:%20An%20Anchor%20Point%20for%20Functionalization&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Besford,%20Quinn%20A&rft.date=2020-09-02&rft.volume=12&rft.issue=35&rft.spage=38976&rft.epage=38988&rft.pages=38976-38988&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c10699&rft_dat=%3Cacs_cross%3Ec101119415%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32805918&rfr_iscdi=true