Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization
Biosourced nanoparticles have a range of desirable properties for therapeutic applications, including biodegradability and low immunogenicity. Glycogen, a natural polysaccharide nanoparticle, has garnered much interest as a component of advanced therapeutic materials. However, functionalizing glycog...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-09, Vol.12 (35), p.38976-38988 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38988 |
---|---|
container_issue | 35 |
container_start_page | 38976 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Besford, Quinn A Weiss, Alessia C. G Schubert, Jonas Ryan, Timothy M Maitz, Manfred F Tomanin, Pietro Pacchin Savioli, Marco Werner, Carsten Fery, Andreas Caruso, Frank Cavalieri, Francesca |
description | Biosourced nanoparticles have a range of desirable properties for therapeutic applications, including biodegradability and low immunogenicity. Glycogen, a natural polysaccharide nanoparticle, has garnered much interest as a component of advanced therapeutic materials. However, functionalizing glycogen for use as a therapeutic material typically involves synthetic approaches that can negatively affect the intrinsic physiological properties of glycogen. Herein, the protein component of glycogen is examined as an anchor point for the photopolymerization of functional poly(N-isopropylacrylamide) (PNIPAM) polymers. Oyster glycogen (OG) nanoparticles partially degrade to smaller spherical particles in the presence of protease enzymes, reflecting a population of surface-bound proteins on the polysaccharide. The grafting of PNIPAM to the native protein component of OG produces OG-PNIPAM nanoparticles of ∼45 nm in diameter and 6.2 MDa in molecular weight. PNIPAM endows the nanoparticles with temperature-responsive aggregation properties that are controllable and reversible and that can be removed by the biodegradation of the protein. The OG-PNIPAM nanoparticles retain the native biodegradability of glycogen. Whole blood incubation assays revealed that the OG-PNIPAM nanoparticles have a low cell association and inflammatory response similar to that of OG. The reported strategy provides functionalized glycogen nanomaterials that retain their inherent biodegradability and low immune cell association. |
doi_str_mv | 10.1021/acsami.0c10699 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c10699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c101119415</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-a0abd9382e394d1ec925b43efdb96a5b397fa0c9d15593972af2b536ef0a205c3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk6vHiVnoTM_mq7xNoabwnA76MFTeU0T7WiTknSH-debUd1NePC-D77fB98PQreUTClh9AFUgLaeEkVJJuUZGlOZpknOBDs_6TQdoasQdoRknBFxiUac5URImo_Rx9a7XtcWL1zbOattj53Bm0Potcer5qDcp7b4FazrwPe1anR4xHMbR305j7eujgkT1XJvVV87C039DUdxjS4MNEHf_O4Jel8-vS2ek_Vm9bKYrxPgM9InQKCsJM-Z5jKtqFaSiTLl2lSlzECUXM4MECUrKoSMBwPDSsEzbQjEMopP0HT4q7wLwWtTdL5uwR8KSoojo2JgVPwyioG7IdDty1ZXJ_sflGi4HwwxWOzc3sdS4b9vP43jcsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Besford, Quinn A ; Weiss, Alessia C. G ; Schubert, Jonas ; Ryan, Timothy M ; Maitz, Manfred F ; Tomanin, Pietro Pacchin ; Savioli, Marco ; Werner, Carsten ; Fery, Andreas ; Caruso, Frank ; Cavalieri, Francesca</creator><creatorcontrib>Besford, Quinn A ; Weiss, Alessia C. G ; Schubert, Jonas ; Ryan, Timothy M ; Maitz, Manfred F ; Tomanin, Pietro Pacchin ; Savioli, Marco ; Werner, Carsten ; Fery, Andreas ; Caruso, Frank ; Cavalieri, Francesca</creatorcontrib><description>Biosourced nanoparticles have a range of desirable properties for therapeutic applications, including biodegradability and low immunogenicity. Glycogen, a natural polysaccharide nanoparticle, has garnered much interest as a component of advanced therapeutic materials. However, functionalizing glycogen for use as a therapeutic material typically involves synthetic approaches that can negatively affect the intrinsic physiological properties of glycogen. Herein, the protein component of glycogen is examined as an anchor point for the photopolymerization of functional poly(N-isopropylacrylamide) (PNIPAM) polymers. Oyster glycogen (OG) nanoparticles partially degrade to smaller spherical particles in the presence of protease enzymes, reflecting a population of surface-bound proteins on the polysaccharide. The grafting of PNIPAM to the native protein component of OG produces OG-PNIPAM nanoparticles of ∼45 nm in diameter and 6.2 MDa in molecular weight. PNIPAM endows the nanoparticles with temperature-responsive aggregation properties that are controllable and reversible and that can be removed by the biodegradation of the protein. The OG-PNIPAM nanoparticles retain the native biodegradability of glycogen. Whole blood incubation assays revealed that the OG-PNIPAM nanoparticles have a low cell association and inflammatory response similar to that of OG. The reported strategy provides functionalized glycogen nanomaterials that retain their inherent biodegradability and low immune cell association.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c10699</identifier><identifier>PMID: 32805918</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acrylic Resins - chemistry ; Amylases - metabolism ; Animals ; Biological and Medical Applications of Materials and Interfaces ; Glycogen - chemistry ; Glycogen - metabolism ; Humans ; Liver - metabolism ; Nanoparticles - chemistry ; Particle Size ; Peptide Hydrolases - metabolism ; Rats ; Surface Properties ; Temperature</subject><ispartof>ACS applied materials & interfaces, 2020-09, Vol.12 (35), p.38976-38988</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-a0abd9382e394d1ec925b43efdb96a5b397fa0c9d15593972af2b536ef0a205c3</citedby><cites>FETCH-LOGICAL-a370t-a0abd9382e394d1ec925b43efdb96a5b397fa0c9d15593972af2b536ef0a205c3</cites><orcidid>0000-0001-6692-3762 ; 0000-0002-1779-9176 ; 0000-0002-5728-9779 ; 0000-0002-5547-3863 ; 0000-0001-5391-5069 ; 0000-0002-0197-497X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c10699$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c10699$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32805918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Besford, Quinn A</creatorcontrib><creatorcontrib>Weiss, Alessia C. G</creatorcontrib><creatorcontrib>Schubert, Jonas</creatorcontrib><creatorcontrib>Ryan, Timothy M</creatorcontrib><creatorcontrib>Maitz, Manfred F</creatorcontrib><creatorcontrib>Tomanin, Pietro Pacchin</creatorcontrib><creatorcontrib>Savioli, Marco</creatorcontrib><creatorcontrib>Werner, Carsten</creatorcontrib><creatorcontrib>Fery, Andreas</creatorcontrib><creatorcontrib>Caruso, Frank</creatorcontrib><creatorcontrib>Cavalieri, Francesca</creatorcontrib><title>Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Biosourced nanoparticles have a range of desirable properties for therapeutic applications, including biodegradability and low immunogenicity. Glycogen, a natural polysaccharide nanoparticle, has garnered much interest as a component of advanced therapeutic materials. However, functionalizing glycogen for use as a therapeutic material typically involves synthetic approaches that can negatively affect the intrinsic physiological properties of glycogen. Herein, the protein component of glycogen is examined as an anchor point for the photopolymerization of functional poly(N-isopropylacrylamide) (PNIPAM) polymers. Oyster glycogen (OG) nanoparticles partially degrade to smaller spherical particles in the presence of protease enzymes, reflecting a population of surface-bound proteins on the polysaccharide. The grafting of PNIPAM to the native protein component of OG produces OG-PNIPAM nanoparticles of ∼45 nm in diameter and 6.2 MDa in molecular weight. PNIPAM endows the nanoparticles with temperature-responsive aggregation properties that are controllable and reversible and that can be removed by the biodegradation of the protein. The OG-PNIPAM nanoparticles retain the native biodegradability of glycogen. Whole blood incubation assays revealed that the OG-PNIPAM nanoparticles have a low cell association and inflammatory response similar to that of OG. The reported strategy provides functionalized glycogen nanomaterials that retain their inherent biodegradability and low immune cell association.</description><subject>Acrylic Resins - chemistry</subject><subject>Amylases - metabolism</subject><subject>Animals</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Glycogen - chemistry</subject><subject>Glycogen - metabolism</subject><subject>Humans</subject><subject>Liver - metabolism</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Rats</subject><subject>Surface Properties</subject><subject>Temperature</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4Mobk6vHiVnoTM_mq7xNoabwnA76MFTeU0T7WiTknSH-debUd1NePC-D77fB98PQreUTClh9AFUgLaeEkVJJuUZGlOZpknOBDs_6TQdoasQdoRknBFxiUac5URImo_Rx9a7XtcWL1zbOattj53Bm0Potcer5qDcp7b4FazrwPe1anR4xHMbR305j7eujgkT1XJvVV87C039DUdxjS4MNEHf_O4Jel8-vS2ek_Vm9bKYrxPgM9InQKCsJM-Z5jKtqFaSiTLl2lSlzECUXM4MECUrKoSMBwPDSsEzbQjEMopP0HT4q7wLwWtTdL5uwR8KSoojo2JgVPwyioG7IdDty1ZXJ_sflGi4HwwxWOzc3sdS4b9vP43jcsc</recordid><startdate>20200902</startdate><enddate>20200902</enddate><creator>Besford, Quinn A</creator><creator>Weiss, Alessia C. G</creator><creator>Schubert, Jonas</creator><creator>Ryan, Timothy M</creator><creator>Maitz, Manfred F</creator><creator>Tomanin, Pietro Pacchin</creator><creator>Savioli, Marco</creator><creator>Werner, Carsten</creator><creator>Fery, Andreas</creator><creator>Caruso, Frank</creator><creator>Cavalieri, Francesca</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6692-3762</orcidid><orcidid>https://orcid.org/0000-0002-1779-9176</orcidid><orcidid>https://orcid.org/0000-0002-5728-9779</orcidid><orcidid>https://orcid.org/0000-0002-5547-3863</orcidid><orcidid>https://orcid.org/0000-0001-5391-5069</orcidid><orcidid>https://orcid.org/0000-0002-0197-497X</orcidid></search><sort><creationdate>20200902</creationdate><title>Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization</title><author>Besford, Quinn A ; Weiss, Alessia C. G ; Schubert, Jonas ; Ryan, Timothy M ; Maitz, Manfred F ; Tomanin, Pietro Pacchin ; Savioli, Marco ; Werner, Carsten ; Fery, Andreas ; Caruso, Frank ; Cavalieri, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-a0abd9382e394d1ec925b43efdb96a5b397fa0c9d15593972af2b536ef0a205c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Amylases - metabolism</topic><topic>Animals</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Glycogen - chemistry</topic><topic>Glycogen - metabolism</topic><topic>Humans</topic><topic>Liver - metabolism</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Rats</topic><topic>Surface Properties</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besford, Quinn A</creatorcontrib><creatorcontrib>Weiss, Alessia C. G</creatorcontrib><creatorcontrib>Schubert, Jonas</creatorcontrib><creatorcontrib>Ryan, Timothy M</creatorcontrib><creatorcontrib>Maitz, Manfred F</creatorcontrib><creatorcontrib>Tomanin, Pietro Pacchin</creatorcontrib><creatorcontrib>Savioli, Marco</creatorcontrib><creatorcontrib>Werner, Carsten</creatorcontrib><creatorcontrib>Fery, Andreas</creatorcontrib><creatorcontrib>Caruso, Frank</creatorcontrib><creatorcontrib>Cavalieri, Francesca</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besford, Quinn A</au><au>Weiss, Alessia C. G</au><au>Schubert, Jonas</au><au>Ryan, Timothy M</au><au>Maitz, Manfred F</au><au>Tomanin, Pietro Pacchin</au><au>Savioli, Marco</au><au>Werner, Carsten</au><au>Fery, Andreas</au><au>Caruso, Frank</au><au>Cavalieri, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-09-02</date><risdate>2020</risdate><volume>12</volume><issue>35</issue><spage>38976</spage><epage>38988</epage><pages>38976-38988</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Biosourced nanoparticles have a range of desirable properties for therapeutic applications, including biodegradability and low immunogenicity. Glycogen, a natural polysaccharide nanoparticle, has garnered much interest as a component of advanced therapeutic materials. However, functionalizing glycogen for use as a therapeutic material typically involves synthetic approaches that can negatively affect the intrinsic physiological properties of glycogen. Herein, the protein component of glycogen is examined as an anchor point for the photopolymerization of functional poly(N-isopropylacrylamide) (PNIPAM) polymers. Oyster glycogen (OG) nanoparticles partially degrade to smaller spherical particles in the presence of protease enzymes, reflecting a population of surface-bound proteins on the polysaccharide. The grafting of PNIPAM to the native protein component of OG produces OG-PNIPAM nanoparticles of ∼45 nm in diameter and 6.2 MDa in molecular weight. PNIPAM endows the nanoparticles with temperature-responsive aggregation properties that are controllable and reversible and that can be removed by the biodegradation of the protein. The OG-PNIPAM nanoparticles retain the native biodegradability of glycogen. Whole blood incubation assays revealed that the OG-PNIPAM nanoparticles have a low cell association and inflammatory response similar to that of OG. The reported strategy provides functionalized glycogen nanomaterials that retain their inherent biodegradability and low immune cell association.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32805918</pmid><doi>10.1021/acsami.0c10699</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6692-3762</orcidid><orcidid>https://orcid.org/0000-0002-1779-9176</orcidid><orcidid>https://orcid.org/0000-0002-5728-9779</orcidid><orcidid>https://orcid.org/0000-0002-5547-3863</orcidid><orcidid>https://orcid.org/0000-0001-5391-5069</orcidid><orcidid>https://orcid.org/0000-0002-0197-497X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-09, Vol.12 (35), p.38976-38988 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_0c10699 |
source | American Chemical Society; MEDLINE |
subjects | Acrylic Resins - chemistry Amylases - metabolism Animals Biological and Medical Applications of Materials and Interfaces Glycogen - chemistry Glycogen - metabolism Humans Liver - metabolism Nanoparticles - chemistry Particle Size Peptide Hydrolases - metabolism Rats Surface Properties Temperature |
title | Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Component%20of%20Oyster%20Glycogen%20Nanoparticles:%20An%20Anchor%20Point%20for%20Functionalization&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Besford,%20Quinn%20A&rft.date=2020-09-02&rft.volume=12&rft.issue=35&rft.spage=38976&rft.epage=38988&rft.pages=38976-38988&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c10699&rft_dat=%3Cacs_cross%3Ec101119415%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32805918&rfr_iscdi=true |