Aqueous Electrochemical Partial Oxidation of Gaseous Ethylbenzene by a Ru-Modified Covalent Triazine Framework
Aqueous electrochemical oxidation of hydrocarbons into valuable compounds, such as alcohols and carbonyl compounds, has attracted much attention because these systems can operate under mild conditions without toxic oxidants or flammable solvents. The key requirements to achieve such oxidation reacti...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-07, Vol.12 (26), p.29376-29382, Article acsami.0c07228 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29382 |
---|---|
container_issue | 26 |
container_start_page | 29376 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Kato, Shintaro Iwase, Kazuyuki Harada, Takashi Nakanishi, Shuji Kamiya, Kazuhide |
description | Aqueous electrochemical oxidation of hydrocarbons into valuable compounds, such as alcohols and carbonyl compounds, has attracted much attention because these systems can operate under mild conditions without toxic oxidants or flammable solvents. The key requirements to achieve such oxidation reactions are (1) highly reactive species on an electrocatalyst for the activation of C–H bonds and (2) efficient transportation pathway for water-insoluble hydrocarbons to an electrode surface. We have determined that a gas diffusion electrode (GDE) supporting Ru atom-modified covalent triazine frameworks (Ru-CTF) has an activity for the electrooxidation of gaseous ethylbenzene to acetophenone using an aqueous electrolyte. A high-valency RuO species was formed in Ru-CTF as an effective active site for O-atom insertion into stable C–H bonds. Furthermore, Ru-CTF showed excellent stability during four consecutive cycles with the replacement of the electrolyte every 12 h, although the reactive RuO species is generated. As for the transportation pathway for substrates, the amount of acetophenone generated from gaseous ethylbenzene was much larger than that from ethylbenzene dissolved in an electrolyte. This result indicates that the three-dimensional microstructures in the GDE maximize the transportation of gaseous hydrocarbons and the oxidation reaction occurs at the triple-phase boundary, which enables the use of aqueous electrolytes. |
doi_str_mv | 10.1021/acsami.0c07228 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c07228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d065246210</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-49aac58b3089edc9f2e7715fcc406137b6f8513c3532a3d743e0a5be5a93a6803</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFavnvcspO5HNh_HUtoqVCpSz2GymdCtSVZ3EzX99UZSvHl6h-F5h-Eh5JazGWeC34P2UJsZ0ywWIjkjE56GYZAIJc7_5jC8JFfeHxiLpGBqQpr5R4e283RZoW6d1XusjYaKPoNrzZDbb1NAa2xDbUnX4Ee43fdVjs0RG6R5T4G-dMGTLUxpsKAL-wkVNi3dOQNHMyArBzV-Wfd2TS5KqDzenHJKXlfL3eIh2GzXj4v5JgAZyzYIUwCtklyyJMVCp6XAOOaq1DpkEZdxHpWJ4lJLJQXIIg4lMlA5KkglRAmTUzIb72pnvXdYZu_O1OD6jLPs11Y22spOtobC3VgY9tnBdq4Z3vsP_gG9kG5S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aqueous Electrochemical Partial Oxidation of Gaseous Ethylbenzene by a Ru-Modified Covalent Triazine Framework</title><source>American Chemical Society Journals</source><creator>Kato, Shintaro ; Iwase, Kazuyuki ; Harada, Takashi ; Nakanishi, Shuji ; Kamiya, Kazuhide</creator><creatorcontrib>Kato, Shintaro ; Iwase, Kazuyuki ; Harada, Takashi ; Nakanishi, Shuji ; Kamiya, Kazuhide</creatorcontrib><description>Aqueous electrochemical oxidation of hydrocarbons into valuable compounds, such as alcohols and carbonyl compounds, has attracted much attention because these systems can operate under mild conditions without toxic oxidants or flammable solvents. The key requirements to achieve such oxidation reactions are (1) highly reactive species on an electrocatalyst for the activation of C–H bonds and (2) efficient transportation pathway for water-insoluble hydrocarbons to an electrode surface. We have determined that a gas diffusion electrode (GDE) supporting Ru atom-modified covalent triazine frameworks (Ru-CTF) has an activity for the electrooxidation of gaseous ethylbenzene to acetophenone using an aqueous electrolyte. A high-valency RuO species was formed in Ru-CTF as an effective active site for O-atom insertion into stable C–H bonds. Furthermore, Ru-CTF showed excellent stability during four consecutive cycles with the replacement of the electrolyte every 12 h, although the reactive RuO species is generated. As for the transportation pathway for substrates, the amount of acetophenone generated from gaseous ethylbenzene was much larger than that from ethylbenzene dissolved in an electrolyte. This result indicates that the three-dimensional microstructures in the GDE maximize the transportation of gaseous hydrocarbons and the oxidation reaction occurs at the triple-phase boundary, which enables the use of aqueous electrolytes.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c07228</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2020-07, Vol.12 (26), p.29376-29382, Article acsami.0c07228</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-49aac58b3089edc9f2e7715fcc406137b6f8513c3532a3d743e0a5be5a93a6803</citedby><cites>FETCH-LOGICAL-a373t-49aac58b3089edc9f2e7715fcc406137b6f8513c3532a3d743e0a5be5a93a6803</cites><orcidid>0000-0002-3313-2689 ; 0000-0002-6018-9277 ; 0000-0002-5196-741X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c07228$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c07228$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Kato, Shintaro</creatorcontrib><creatorcontrib>Iwase, Kazuyuki</creatorcontrib><creatorcontrib>Harada, Takashi</creatorcontrib><creatorcontrib>Nakanishi, Shuji</creatorcontrib><creatorcontrib>Kamiya, Kazuhide</creatorcontrib><title>Aqueous Electrochemical Partial Oxidation of Gaseous Ethylbenzene by a Ru-Modified Covalent Triazine Framework</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Aqueous electrochemical oxidation of hydrocarbons into valuable compounds, such as alcohols and carbonyl compounds, has attracted much attention because these systems can operate under mild conditions without toxic oxidants or flammable solvents. The key requirements to achieve such oxidation reactions are (1) highly reactive species on an electrocatalyst for the activation of C–H bonds and (2) efficient transportation pathway for water-insoluble hydrocarbons to an electrode surface. We have determined that a gas diffusion electrode (GDE) supporting Ru atom-modified covalent triazine frameworks (Ru-CTF) has an activity for the electrooxidation of gaseous ethylbenzene to acetophenone using an aqueous electrolyte. A high-valency RuO species was formed in Ru-CTF as an effective active site for O-atom insertion into stable C–H bonds. Furthermore, Ru-CTF showed excellent stability during four consecutive cycles with the replacement of the electrolyte every 12 h, although the reactive RuO species is generated. As for the transportation pathway for substrates, the amount of acetophenone generated from gaseous ethylbenzene was much larger than that from ethylbenzene dissolved in an electrolyte. This result indicates that the three-dimensional microstructures in the GDE maximize the transportation of gaseous hydrocarbons and the oxidation reaction occurs at the triple-phase boundary, which enables the use of aqueous electrolytes.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFavnvcspO5HNh_HUtoqVCpSz2GymdCtSVZ3EzX99UZSvHl6h-F5h-Eh5JazGWeC34P2UJsZ0ywWIjkjE56GYZAIJc7_5jC8JFfeHxiLpGBqQpr5R4e283RZoW6d1XusjYaKPoNrzZDbb1NAa2xDbUnX4Ee43fdVjs0RG6R5T4G-dMGTLUxpsKAL-wkVNi3dOQNHMyArBzV-Wfd2TS5KqDzenHJKXlfL3eIh2GzXj4v5JgAZyzYIUwCtklyyJMVCp6XAOOaq1DpkEZdxHpWJ4lJLJQXIIg4lMlA5KkglRAmTUzIb72pnvXdYZu_O1OD6jLPs11Y22spOtobC3VgY9tnBdq4Z3vsP_gG9kG5S</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kato, Shintaro</creator><creator>Iwase, Kazuyuki</creator><creator>Harada, Takashi</creator><creator>Nakanishi, Shuji</creator><creator>Kamiya, Kazuhide</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3313-2689</orcidid><orcidid>https://orcid.org/0000-0002-6018-9277</orcidid><orcidid>https://orcid.org/0000-0002-5196-741X</orcidid></search><sort><creationdate>20200701</creationdate><title>Aqueous Electrochemical Partial Oxidation of Gaseous Ethylbenzene by a Ru-Modified Covalent Triazine Framework</title><author>Kato, Shintaro ; Iwase, Kazuyuki ; Harada, Takashi ; Nakanishi, Shuji ; Kamiya, Kazuhide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-49aac58b3089edc9f2e7715fcc406137b6f8513c3532a3d743e0a5be5a93a6803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Shintaro</creatorcontrib><creatorcontrib>Iwase, Kazuyuki</creatorcontrib><creatorcontrib>Harada, Takashi</creatorcontrib><creatorcontrib>Nakanishi, Shuji</creatorcontrib><creatorcontrib>Kamiya, Kazuhide</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Shintaro</au><au>Iwase, Kazuyuki</au><au>Harada, Takashi</au><au>Nakanishi, Shuji</au><au>Kamiya, Kazuhide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aqueous Electrochemical Partial Oxidation of Gaseous Ethylbenzene by a Ru-Modified Covalent Triazine Framework</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>12</volume><issue>26</issue><spage>29376</spage><epage>29382</epage><pages>29376-29382</pages><artnum>acsami.0c07228</artnum><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Aqueous electrochemical oxidation of hydrocarbons into valuable compounds, such as alcohols and carbonyl compounds, has attracted much attention because these systems can operate under mild conditions without toxic oxidants or flammable solvents. The key requirements to achieve such oxidation reactions are (1) highly reactive species on an electrocatalyst for the activation of C–H bonds and (2) efficient transportation pathway for water-insoluble hydrocarbons to an electrode surface. We have determined that a gas diffusion electrode (GDE) supporting Ru atom-modified covalent triazine frameworks (Ru-CTF) has an activity for the electrooxidation of gaseous ethylbenzene to acetophenone using an aqueous electrolyte. A high-valency RuO species was formed in Ru-CTF as an effective active site for O-atom insertion into stable C–H bonds. Furthermore, Ru-CTF showed excellent stability during four consecutive cycles with the replacement of the electrolyte every 12 h, although the reactive RuO species is generated. As for the transportation pathway for substrates, the amount of acetophenone generated from gaseous ethylbenzene was much larger than that from ethylbenzene dissolved in an electrolyte. This result indicates that the three-dimensional microstructures in the GDE maximize the transportation of gaseous hydrocarbons and the oxidation reaction occurs at the triple-phase boundary, which enables the use of aqueous electrolytes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.0c07228</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3313-2689</orcidid><orcidid>https://orcid.org/0000-0002-6018-9277</orcidid><orcidid>https://orcid.org/0000-0002-5196-741X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-07, Vol.12 (26), p.29376-29382, Article acsami.0c07228 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_0c07228 |
source | American Chemical Society Journals |
subjects | Energy, Environmental, and Catalysis Applications |
title | Aqueous Electrochemical Partial Oxidation of Gaseous Ethylbenzene by a Ru-Modified Covalent Triazine Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aqueous%20Electrochemical%20Partial%20Oxidation%20of%20Gaseous%20Ethylbenzene%20by%20a%20Ru-Modified%20Covalent%20Triazine%20Framework&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kato,%20Shintaro&rft.date=2020-07-01&rft.volume=12&rft.issue=26&rft.spage=29376&rft.epage=29382&rft.pages=29376-29382&rft.artnum=acsami.0c07228&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c07228&rft_dat=%3Cacs_cross%3Ed065246210%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |