In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma
Glioblastoma is one of the most lethal cancers and needs effective therapeutics. The development of coordination-driven metal-organic nanoassemblies, which can cross the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) and have multiple desired functions, may provide a promising soluti...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-06, Vol.12 (24), p.26880-26892 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26892 |
---|---|
container_issue | 24 |
container_start_page | 26880 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Gao, Haiyan Chu, Chengchao Cheng, Yi Zhang, Yang Pang, Xin Li, Dengfeng Wang, Xiaoyong Ren, En Xie, Fengfei Bai, Yan Chen, Lijuan Liu, Gang Wang, Meiyun |
description | Glioblastoma is one of the most lethal cancers and needs effective therapeutics. The development of coordination-driven metal-organic nanoassemblies, which can cross the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) and have multiple desired functions, may provide a promising solution to this issue. Here, we report an
assembled nanoplatform based on RGD peptide-modified bisulfite-zinc
-dipicolylamine-Arg-Gly-Asp (Bis(DPA-Zn)-RGD) and ultrasmall Au-ICG nanoparticles. Attributed to its positive charges and neovascular targeting properties, Bis(DPA-Zn)-RGD can be selectively delivered to the tumor site, and then assembled in situ into large nanoclusters with subsequently administered Au-ICG nanoparticles. Au nanoparticles with ultrasmall size (∼7 nm) can successfully cross the BBB. The obtained nanoclusters exhibit strong near-infrared-red (NIR) absorption and an enhanced tumor retention effect, enabling precise orthotopic fluorescence/photoacoustic imaging. With the aid of image guidance, the photothermal effect of the nanoclusters is observed to suppress tumor progression with the inhibition efficiency reaching up to 93.9%. Meanwhile, no photothermal damage can be found for normal brain tissues. These results, herein, suggest a feasible nanotheranostic agent with the ability to overcome the BBB and BBTB for imaging and therapy of orthotopic brain tumors. |
doi_str_mv | 10.1021/acsami.0c03873 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c03873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32441504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-188b7ee00249318c5bc959076c84adf2c6ad5b078e2a0e55ad93e2914dca1d423</originalsourceid><addsrcrecordid>eNo9kE9PAjEUxBujEUSvHk2_wGL_srtHIYAkRA7iefO27YYa2pK2mPjtXQJymsm8N3P4IfRMyZgSRl9BJXB2TBThVclv0JDWQhQVk-z26oUYoIeUvgmZcEbkPRrwPqOSiCHKK48_bT7iRYgOsg0ehw5_gA95Z2IvKVuVcA5482OiCs7g_oCn-xB0MY1gPZ5CjNZEDF7jud-BVwZvo4HsjM-ntU3Mu5DDwSq83Nvg4BHddbBP5umiI_S1mG9n78V6s1zN3taFYrXMBa2qtjSGECZqTislW1XLmpQTVQnQHVMT0LIlZWUYECMl6JobVlOhFVAtGB-h8XlXxZBSNF1ziNZB_G0oaU74mjO-5oKvL7ycC4dj64y-vv_z4n9n4G3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma</title><source>MEDLINE</source><source>ACS Publications</source><creator>Gao, Haiyan ; Chu, Chengchao ; Cheng, Yi ; Zhang, Yang ; Pang, Xin ; Li, Dengfeng ; Wang, Xiaoyong ; Ren, En ; Xie, Fengfei ; Bai, Yan ; Chen, Lijuan ; Liu, Gang ; Wang, Meiyun</creator><creatorcontrib>Gao, Haiyan ; Chu, Chengchao ; Cheng, Yi ; Zhang, Yang ; Pang, Xin ; Li, Dengfeng ; Wang, Xiaoyong ; Ren, En ; Xie, Fengfei ; Bai, Yan ; Chen, Lijuan ; Liu, Gang ; Wang, Meiyun</creatorcontrib><description>Glioblastoma is one of the most lethal cancers and needs effective therapeutics. The development of coordination-driven metal-organic nanoassemblies, which can cross the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) and have multiple desired functions, may provide a promising solution to this issue. Here, we report an
assembled nanoplatform based on RGD peptide-modified bisulfite-zinc
-dipicolylamine-Arg-Gly-Asp (Bis(DPA-Zn)-RGD) and ultrasmall Au-ICG nanoparticles. Attributed to its positive charges and neovascular targeting properties, Bis(DPA-Zn)-RGD can be selectively delivered to the tumor site, and then assembled in situ into large nanoclusters with subsequently administered Au-ICG nanoparticles. Au nanoparticles with ultrasmall size (∼7 nm) can successfully cross the BBB. The obtained nanoclusters exhibit strong near-infrared-red (NIR) absorption and an enhanced tumor retention effect, enabling precise orthotopic fluorescence/photoacoustic imaging. With the aid of image guidance, the photothermal effect of the nanoclusters is observed to suppress tumor progression with the inhibition efficiency reaching up to 93.9%. Meanwhile, no photothermal damage can be found for normal brain tissues. These results, herein, suggest a feasible nanotheranostic agent with the ability to overcome the BBB and BBTB for imaging and therapy of orthotopic brain tumors.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c03873</identifier><identifier>PMID: 32441504</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Blood-Brain Barrier - metabolism ; Glioma - diagnostic imaging ; Glioma - immunology ; Glioma - therapy ; Gold - chemistry ; Humans ; Metal Nanoparticles - chemistry ; Theranostic Nanomedicine - methods ; Tumor Microenvironment - physiology</subject><ispartof>ACS applied materials & interfaces, 2020-06, Vol.12 (24), p.26880-26892</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-188b7ee00249318c5bc959076c84adf2c6ad5b078e2a0e55ad93e2914dca1d423</citedby><cites>FETCH-LOGICAL-c295t-188b7ee00249318c5bc959076c84adf2c6ad5b078e2a0e55ad93e2914dca1d423</cites><orcidid>0000-0003-2613-7286 ; 0000-0001-8779-6184 ; 0000-0002-6340-8922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2752,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32441504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Haiyan</creatorcontrib><creatorcontrib>Chu, Chengchao</creatorcontrib><creatorcontrib>Cheng, Yi</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Pang, Xin</creatorcontrib><creatorcontrib>Li, Dengfeng</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>Ren, En</creatorcontrib><creatorcontrib>Xie, Fengfei</creatorcontrib><creatorcontrib>Bai, Yan</creatorcontrib><creatorcontrib>Chen, Lijuan</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Wang, Meiyun</creatorcontrib><title>In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Glioblastoma is one of the most lethal cancers and needs effective therapeutics. The development of coordination-driven metal-organic nanoassemblies, which can cross the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) and have multiple desired functions, may provide a promising solution to this issue. Here, we report an
assembled nanoplatform based on RGD peptide-modified bisulfite-zinc
-dipicolylamine-Arg-Gly-Asp (Bis(DPA-Zn)-RGD) and ultrasmall Au-ICG nanoparticles. Attributed to its positive charges and neovascular targeting properties, Bis(DPA-Zn)-RGD can be selectively delivered to the tumor site, and then assembled in situ into large nanoclusters with subsequently administered Au-ICG nanoparticles. Au nanoparticles with ultrasmall size (∼7 nm) can successfully cross the BBB. The obtained nanoclusters exhibit strong near-infrared-red (NIR) absorption and an enhanced tumor retention effect, enabling precise orthotopic fluorescence/photoacoustic imaging. With the aid of image guidance, the photothermal effect of the nanoclusters is observed to suppress tumor progression with the inhibition efficiency reaching up to 93.9%. Meanwhile, no photothermal damage can be found for normal brain tissues. These results, herein, suggest a feasible nanotheranostic agent with the ability to overcome the BBB and BBTB for imaging and therapy of orthotopic brain tumors.</description><subject>Animals</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Glioma - diagnostic imaging</subject><subject>Glioma - immunology</subject><subject>Glioma - therapy</subject><subject>Gold - chemistry</subject><subject>Humans</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Theranostic Nanomedicine - methods</subject><subject>Tumor Microenvironment - physiology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE9PAjEUxBujEUSvHk2_wGL_srtHIYAkRA7iefO27YYa2pK2mPjtXQJymsm8N3P4IfRMyZgSRl9BJXB2TBThVclv0JDWQhQVk-z26oUYoIeUvgmZcEbkPRrwPqOSiCHKK48_bT7iRYgOsg0ehw5_gA95Z2IvKVuVcA5482OiCs7g_oCn-xB0MY1gPZ5CjNZEDF7jud-BVwZvo4HsjM-ntU3Mu5DDwSq83Nvg4BHddbBP5umiI_S1mG9n78V6s1zN3taFYrXMBa2qtjSGECZqTislW1XLmpQTVQnQHVMT0LIlZWUYECMl6JobVlOhFVAtGB-h8XlXxZBSNF1ziNZB_G0oaU74mjO-5oKvL7ycC4dj64y-vv_z4n9n4G3g</recordid><startdate>20200617</startdate><enddate>20200617</enddate><creator>Gao, Haiyan</creator><creator>Chu, Chengchao</creator><creator>Cheng, Yi</creator><creator>Zhang, Yang</creator><creator>Pang, Xin</creator><creator>Li, Dengfeng</creator><creator>Wang, Xiaoyong</creator><creator>Ren, En</creator><creator>Xie, Fengfei</creator><creator>Bai, Yan</creator><creator>Chen, Lijuan</creator><creator>Liu, Gang</creator><creator>Wang, Meiyun</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2613-7286</orcidid><orcidid>https://orcid.org/0000-0001-8779-6184</orcidid><orcidid>https://orcid.org/0000-0002-6340-8922</orcidid></search><sort><creationdate>20200617</creationdate><title>In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma</title><author>Gao, Haiyan ; Chu, Chengchao ; Cheng, Yi ; Zhang, Yang ; Pang, Xin ; Li, Dengfeng ; Wang, Xiaoyong ; Ren, En ; Xie, Fengfei ; Bai, Yan ; Chen, Lijuan ; Liu, Gang ; Wang, Meiyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-188b7ee00249318c5bc959076c84adf2c6ad5b078e2a0e55ad93e2914dca1d423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Glioma - diagnostic imaging</topic><topic>Glioma - immunology</topic><topic>Glioma - therapy</topic><topic>Gold - chemistry</topic><topic>Humans</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Theranostic Nanomedicine - methods</topic><topic>Tumor Microenvironment - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Haiyan</creatorcontrib><creatorcontrib>Chu, Chengchao</creatorcontrib><creatorcontrib>Cheng, Yi</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Pang, Xin</creatorcontrib><creatorcontrib>Li, Dengfeng</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>Ren, En</creatorcontrib><creatorcontrib>Xie, Fengfei</creatorcontrib><creatorcontrib>Bai, Yan</creatorcontrib><creatorcontrib>Chen, Lijuan</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Wang, Meiyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Haiyan</au><au>Chu, Chengchao</au><au>Cheng, Yi</au><au>Zhang, Yang</au><au>Pang, Xin</au><au>Li, Dengfeng</au><au>Wang, Xiaoyong</au><au>Ren, En</au><au>Xie, Fengfei</au><au>Bai, Yan</au><au>Chen, Lijuan</au><au>Liu, Gang</au><au>Wang, Meiyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2020-06-17</date><risdate>2020</risdate><volume>12</volume><issue>24</issue><spage>26880</spage><epage>26892</epage><pages>26880-26892</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Glioblastoma is one of the most lethal cancers and needs effective therapeutics. The development of coordination-driven metal-organic nanoassemblies, which can cross the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) and have multiple desired functions, may provide a promising solution to this issue. Here, we report an
assembled nanoplatform based on RGD peptide-modified bisulfite-zinc
-dipicolylamine-Arg-Gly-Asp (Bis(DPA-Zn)-RGD) and ultrasmall Au-ICG nanoparticles. Attributed to its positive charges and neovascular targeting properties, Bis(DPA-Zn)-RGD can be selectively delivered to the tumor site, and then assembled in situ into large nanoclusters with subsequently administered Au-ICG nanoparticles. Au nanoparticles with ultrasmall size (∼7 nm) can successfully cross the BBB. The obtained nanoclusters exhibit strong near-infrared-red (NIR) absorption and an enhanced tumor retention effect, enabling precise orthotopic fluorescence/photoacoustic imaging. With the aid of image guidance, the photothermal effect of the nanoclusters is observed to suppress tumor progression with the inhibition efficiency reaching up to 93.9%. Meanwhile, no photothermal damage can be found for normal brain tissues. These results, herein, suggest a feasible nanotheranostic agent with the ability to overcome the BBB and BBTB for imaging and therapy of orthotopic brain tumors.</abstract><cop>United States</cop><pmid>32441504</pmid><doi>10.1021/acsami.0c03873</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2613-7286</orcidid><orcidid>https://orcid.org/0000-0001-8779-6184</orcidid><orcidid>https://orcid.org/0000-0002-6340-8922</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-06, Vol.12 (24), p.26880-26892 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_0c03873 |
source | MEDLINE; ACS Publications |
subjects | Animals Blood-Brain Barrier - metabolism Glioma - diagnostic imaging Glioma - immunology Glioma - therapy Gold - chemistry Humans Metal Nanoparticles - chemistry Theranostic Nanomedicine - methods Tumor Microenvironment - physiology |
title | In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Formation%20of%20Nanotheranostics%20to%20Overcome%20the%20Blood-Brain%20Barrier%20and%20Enhance%20Treatment%20of%20Orthotopic%20Glioma&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Gao,%20Haiyan&rft.date=2020-06-17&rft.volume=12&rft.issue=24&rft.spage=26880&rft.epage=26892&rft.pages=26880-26892&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c03873&rft_dat=%3Cpubmed_cross%3E32441504%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32441504&rfr_iscdi=true |