In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma

Glioblastoma is one of the most lethal cancers and needs effective therapeutics. The development of coordination-driven metal-organic nanoassemblies, which can cross the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) and have multiple desired functions, may provide a promising soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-06, Vol.12 (24), p.26880-26892
Hauptverfasser: Gao, Haiyan, Chu, Chengchao, Cheng, Yi, Zhang, Yang, Pang, Xin, Li, Dengfeng, Wang, Xiaoyong, Ren, En, Xie, Fengfei, Bai, Yan, Chen, Lijuan, Liu, Gang, Wang, Meiyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26892
container_issue 24
container_start_page 26880
container_title ACS applied materials & interfaces
container_volume 12
creator Gao, Haiyan
Chu, Chengchao
Cheng, Yi
Zhang, Yang
Pang, Xin
Li, Dengfeng
Wang, Xiaoyong
Ren, En
Xie, Fengfei
Bai, Yan
Chen, Lijuan
Liu, Gang
Wang, Meiyun
description Glioblastoma is one of the most lethal cancers and needs effective therapeutics. The development of coordination-driven metal-organic nanoassemblies, which can cross the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) and have multiple desired functions, may provide a promising solution to this issue. Here, we report an assembled nanoplatform based on RGD peptide-modified bisulfite-zinc -dipicolylamine-Arg-Gly-Asp (Bis(DPA-Zn)-RGD) and ultrasmall Au-ICG nanoparticles. Attributed to its positive charges and neovascular targeting properties, Bis(DPA-Zn)-RGD can be selectively delivered to the tumor site, and then assembled in situ into large nanoclusters with subsequently administered Au-ICG nanoparticles. Au nanoparticles with ultrasmall size (∼7 nm) can successfully cross the BBB. The obtained nanoclusters exhibit strong near-infrared-red (NIR) absorption and an enhanced tumor retention effect, enabling precise orthotopic fluorescence/photoacoustic imaging. With the aid of image guidance, the photothermal effect of the nanoclusters is observed to suppress tumor progression with the inhibition efficiency reaching up to 93.9%. Meanwhile, no photothermal damage can be found for normal brain tissues. These results, herein, suggest a feasible nanotheranostic agent with the ability to overcome the BBB and BBTB for imaging and therapy of orthotopic brain tumors.
doi_str_mv 10.1021/acsami.0c03873
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c03873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32441504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-188b7ee00249318c5bc959076c84adf2c6ad5b078e2a0e55ad93e2914dca1d423</originalsourceid><addsrcrecordid>eNo9kE9PAjEUxBujEUSvHk2_wGL_srtHIYAkRA7iefO27YYa2pK2mPjtXQJymsm8N3P4IfRMyZgSRl9BJXB2TBThVclv0JDWQhQVk-z26oUYoIeUvgmZcEbkPRrwPqOSiCHKK48_bT7iRYgOsg0ehw5_gA95Z2IvKVuVcA5482OiCs7g_oCn-xB0MY1gPZ5CjNZEDF7jud-BVwZvo4HsjM-ntU3Mu5DDwSq83Nvg4BHddbBP5umiI_S1mG9n78V6s1zN3taFYrXMBa2qtjSGECZqTislW1XLmpQTVQnQHVMT0LIlZWUYECMl6JobVlOhFVAtGB-h8XlXxZBSNF1ziNZB_G0oaU74mjO-5oKvL7ycC4dj64y-vv_z4n9n4G3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma</title><source>MEDLINE</source><source>ACS Publications</source><creator>Gao, Haiyan ; Chu, Chengchao ; Cheng, Yi ; Zhang, Yang ; Pang, Xin ; Li, Dengfeng ; Wang, Xiaoyong ; Ren, En ; Xie, Fengfei ; Bai, Yan ; Chen, Lijuan ; Liu, Gang ; Wang, Meiyun</creator><creatorcontrib>Gao, Haiyan ; Chu, Chengchao ; Cheng, Yi ; Zhang, Yang ; Pang, Xin ; Li, Dengfeng ; Wang, Xiaoyong ; Ren, En ; Xie, Fengfei ; Bai, Yan ; Chen, Lijuan ; Liu, Gang ; Wang, Meiyun</creatorcontrib><description>Glioblastoma is one of the most lethal cancers and needs effective therapeutics. The development of coordination-driven metal-organic nanoassemblies, which can cross the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) and have multiple desired functions, may provide a promising solution to this issue. Here, we report an assembled nanoplatform based on RGD peptide-modified bisulfite-zinc -dipicolylamine-Arg-Gly-Asp (Bis(DPA-Zn)-RGD) and ultrasmall Au-ICG nanoparticles. Attributed to its positive charges and neovascular targeting properties, Bis(DPA-Zn)-RGD can be selectively delivered to the tumor site, and then assembled in situ into large nanoclusters with subsequently administered Au-ICG nanoparticles. Au nanoparticles with ultrasmall size (∼7 nm) can successfully cross the BBB. The obtained nanoclusters exhibit strong near-infrared-red (NIR) absorption and an enhanced tumor retention effect, enabling precise orthotopic fluorescence/photoacoustic imaging. With the aid of image guidance, the photothermal effect of the nanoclusters is observed to suppress tumor progression with the inhibition efficiency reaching up to 93.9%. Meanwhile, no photothermal damage can be found for normal brain tissues. These results, herein, suggest a feasible nanotheranostic agent with the ability to overcome the BBB and BBTB for imaging and therapy of orthotopic brain tumors.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c03873</identifier><identifier>PMID: 32441504</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Blood-Brain Barrier - metabolism ; Glioma - diagnostic imaging ; Glioma - immunology ; Glioma - therapy ; Gold - chemistry ; Humans ; Metal Nanoparticles - chemistry ; Theranostic Nanomedicine - methods ; Tumor Microenvironment - physiology</subject><ispartof>ACS applied materials &amp; interfaces, 2020-06, Vol.12 (24), p.26880-26892</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-188b7ee00249318c5bc959076c84adf2c6ad5b078e2a0e55ad93e2914dca1d423</citedby><cites>FETCH-LOGICAL-c295t-188b7ee00249318c5bc959076c84adf2c6ad5b078e2a0e55ad93e2914dca1d423</cites><orcidid>0000-0003-2613-7286 ; 0000-0001-8779-6184 ; 0000-0002-6340-8922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2752,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32441504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Haiyan</creatorcontrib><creatorcontrib>Chu, Chengchao</creatorcontrib><creatorcontrib>Cheng, Yi</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Pang, Xin</creatorcontrib><creatorcontrib>Li, Dengfeng</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>Ren, En</creatorcontrib><creatorcontrib>Xie, Fengfei</creatorcontrib><creatorcontrib>Bai, Yan</creatorcontrib><creatorcontrib>Chen, Lijuan</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Wang, Meiyun</creatorcontrib><title>In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Glioblastoma is one of the most lethal cancers and needs effective therapeutics. The development of coordination-driven metal-organic nanoassemblies, which can cross the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) and have multiple desired functions, may provide a promising solution to this issue. Here, we report an assembled nanoplatform based on RGD peptide-modified bisulfite-zinc -dipicolylamine-Arg-Gly-Asp (Bis(DPA-Zn)-RGD) and ultrasmall Au-ICG nanoparticles. Attributed to its positive charges and neovascular targeting properties, Bis(DPA-Zn)-RGD can be selectively delivered to the tumor site, and then assembled in situ into large nanoclusters with subsequently administered Au-ICG nanoparticles. Au nanoparticles with ultrasmall size (∼7 nm) can successfully cross the BBB. The obtained nanoclusters exhibit strong near-infrared-red (NIR) absorption and an enhanced tumor retention effect, enabling precise orthotopic fluorescence/photoacoustic imaging. With the aid of image guidance, the photothermal effect of the nanoclusters is observed to suppress tumor progression with the inhibition efficiency reaching up to 93.9%. Meanwhile, no photothermal damage can be found for normal brain tissues. These results, herein, suggest a feasible nanotheranostic agent with the ability to overcome the BBB and BBTB for imaging and therapy of orthotopic brain tumors.</description><subject>Animals</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Glioma - diagnostic imaging</subject><subject>Glioma - immunology</subject><subject>Glioma - therapy</subject><subject>Gold - chemistry</subject><subject>Humans</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Theranostic Nanomedicine - methods</subject><subject>Tumor Microenvironment - physiology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE9PAjEUxBujEUSvHk2_wGL_srtHIYAkRA7iefO27YYa2pK2mPjtXQJymsm8N3P4IfRMyZgSRl9BJXB2TBThVclv0JDWQhQVk-z26oUYoIeUvgmZcEbkPRrwPqOSiCHKK48_bT7iRYgOsg0ehw5_gA95Z2IvKVuVcA5482OiCs7g_oCn-xB0MY1gPZ5CjNZEDF7jud-BVwZvo4HsjM-ntU3Mu5DDwSq83Nvg4BHddbBP5umiI_S1mG9n78V6s1zN3taFYrXMBa2qtjSGECZqTislW1XLmpQTVQnQHVMT0LIlZWUYECMl6JobVlOhFVAtGB-h8XlXxZBSNF1ziNZB_G0oaU74mjO-5oKvL7ycC4dj64y-vv_z4n9n4G3g</recordid><startdate>20200617</startdate><enddate>20200617</enddate><creator>Gao, Haiyan</creator><creator>Chu, Chengchao</creator><creator>Cheng, Yi</creator><creator>Zhang, Yang</creator><creator>Pang, Xin</creator><creator>Li, Dengfeng</creator><creator>Wang, Xiaoyong</creator><creator>Ren, En</creator><creator>Xie, Fengfei</creator><creator>Bai, Yan</creator><creator>Chen, Lijuan</creator><creator>Liu, Gang</creator><creator>Wang, Meiyun</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2613-7286</orcidid><orcidid>https://orcid.org/0000-0001-8779-6184</orcidid><orcidid>https://orcid.org/0000-0002-6340-8922</orcidid></search><sort><creationdate>20200617</creationdate><title>In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma</title><author>Gao, Haiyan ; Chu, Chengchao ; Cheng, Yi ; Zhang, Yang ; Pang, Xin ; Li, Dengfeng ; Wang, Xiaoyong ; Ren, En ; Xie, Fengfei ; Bai, Yan ; Chen, Lijuan ; Liu, Gang ; Wang, Meiyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-188b7ee00249318c5bc959076c84adf2c6ad5b078e2a0e55ad93e2914dca1d423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Glioma - diagnostic imaging</topic><topic>Glioma - immunology</topic><topic>Glioma - therapy</topic><topic>Gold - chemistry</topic><topic>Humans</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Theranostic Nanomedicine - methods</topic><topic>Tumor Microenvironment - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Haiyan</creatorcontrib><creatorcontrib>Chu, Chengchao</creatorcontrib><creatorcontrib>Cheng, Yi</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Pang, Xin</creatorcontrib><creatorcontrib>Li, Dengfeng</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>Ren, En</creatorcontrib><creatorcontrib>Xie, Fengfei</creatorcontrib><creatorcontrib>Bai, Yan</creatorcontrib><creatorcontrib>Chen, Lijuan</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Wang, Meiyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Haiyan</au><au>Chu, Chengchao</au><au>Cheng, Yi</au><au>Zhang, Yang</au><au>Pang, Xin</au><au>Li, Dengfeng</au><au>Wang, Xiaoyong</au><au>Ren, En</au><au>Xie, Fengfei</au><au>Bai, Yan</au><au>Chen, Lijuan</au><au>Liu, Gang</au><au>Wang, Meiyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2020-06-17</date><risdate>2020</risdate><volume>12</volume><issue>24</issue><spage>26880</spage><epage>26892</epage><pages>26880-26892</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Glioblastoma is one of the most lethal cancers and needs effective therapeutics. The development of coordination-driven metal-organic nanoassemblies, which can cross the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) and have multiple desired functions, may provide a promising solution to this issue. Here, we report an assembled nanoplatform based on RGD peptide-modified bisulfite-zinc -dipicolylamine-Arg-Gly-Asp (Bis(DPA-Zn)-RGD) and ultrasmall Au-ICG nanoparticles. Attributed to its positive charges and neovascular targeting properties, Bis(DPA-Zn)-RGD can be selectively delivered to the tumor site, and then assembled in situ into large nanoclusters with subsequently administered Au-ICG nanoparticles. Au nanoparticles with ultrasmall size (∼7 nm) can successfully cross the BBB. The obtained nanoclusters exhibit strong near-infrared-red (NIR) absorption and an enhanced tumor retention effect, enabling precise orthotopic fluorescence/photoacoustic imaging. With the aid of image guidance, the photothermal effect of the nanoclusters is observed to suppress tumor progression with the inhibition efficiency reaching up to 93.9%. Meanwhile, no photothermal damage can be found for normal brain tissues. These results, herein, suggest a feasible nanotheranostic agent with the ability to overcome the BBB and BBTB for imaging and therapy of orthotopic brain tumors.</abstract><cop>United States</cop><pmid>32441504</pmid><doi>10.1021/acsami.0c03873</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2613-7286</orcidid><orcidid>https://orcid.org/0000-0001-8779-6184</orcidid><orcidid>https://orcid.org/0000-0002-6340-8922</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-06, Vol.12 (24), p.26880-26892
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_0c03873
source MEDLINE; ACS Publications
subjects Animals
Blood-Brain Barrier - metabolism
Glioma - diagnostic imaging
Glioma - immunology
Glioma - therapy
Gold - chemistry
Humans
Metal Nanoparticles - chemistry
Theranostic Nanomedicine - methods
Tumor Microenvironment - physiology
title In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Formation%20of%20Nanotheranostics%20to%20Overcome%20the%20Blood-Brain%20Barrier%20and%20Enhance%20Treatment%20of%20Orthotopic%20Glioma&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Gao,%20Haiyan&rft.date=2020-06-17&rft.volume=12&rft.issue=24&rft.spage=26880&rft.epage=26892&rft.pages=26880-26892&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c03873&rft_dat=%3Cpubmed_cross%3E32441504%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32441504&rfr_iscdi=true