Controlled Prelithiation of SnO 2 /C Nanocomposite Anodes for Building Full Lithium-Ion Batteries
SnO is an attractive anodic material for advanced lithium-ion batteries (LIBs). However, its low electronic conductivity and large volume change in lithiation/delithiation lead to a poor rate/cycling performance. Moreover, the initial Coulombic efficiencies (CEs) of SnO anodes are usually too low to...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-04, Vol.12 (17), p.19423-19430 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19430 |
---|---|
container_issue | 17 |
container_start_page | 19423 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Li, Feifei Wang, Gongwei Zheng, Dong Zhang, Xiaoxiao Abegglen, Caleb J Qu, Huainan Qu, Deyang |
description | SnO
is an attractive anodic material for advanced lithium-ion batteries (LIBs). However, its low electronic conductivity and large volume change in lithiation/delithiation lead to a poor rate/cycling performance. Moreover, the initial Coulombic efficiencies (CEs) of SnO
anodes are usually too low to build practical full LIBs. Herein, a two-step hydrothermal synthesis and pyrolysis method is used to prepare a SnO
/C nanocomposite, in which aggregated SnO
nanosheets and a carbon network are well-interpenetrated with each other. The SnO
/C nanocomposite exhibits a good rate/cycling performance in half-cell tests but still shows a low initial CE of 45%. To overcome this shortage and realize its application in a full-cell assembly, the SnO
/C anode is controllably prelithiated by the lithium-biphenyl reagent and then coupled with a LiCoO
cathode. The resulting full LIB displays a high capacity of over 98 mAh g
in 300 cycles at 1 C rate. |
doi_str_mv | 10.1021/acsami.0c00729 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c00729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32264670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1070-83c943191c070293a661666f2d11517c8c7e42c06fa865de5dc85b3955b3e8d93</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWwZYn8A2n9TrxsIwqVIooErCPXdsDIiSs7WfD3TdXSzdwZac5dHAAeMZpjRPBC6aRaN0caoZzIKzDFkrGsIJxcX3bGJuAupV-EBCWI34IJJUQwkaMpUGXo-hi8twa-R-td_-NU70IHQwM_ui0kcFHCN9UFHdp9SK63cNkFYxNsQoSrwXnjum-4HryH1ZEe2mwz4ivV9zY6m-7BTaN8sg_nnIGv9fNn-ZpV25dNuawyjVGOsoJqySiWWI8XkVQJgYUQDTEYc5zrQueWEY1EowrBjeVGF3xHJR-HLYykMzA_9eoYUoq2qffRtSr-1RjVR1f1yVV9djUCTydgP-xaay7v_3LoAT2KZTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlled Prelithiation of SnO 2 /C Nanocomposite Anodes for Building Full Lithium-Ion Batteries</title><source>ACS Publications</source><creator>Li, Feifei ; Wang, Gongwei ; Zheng, Dong ; Zhang, Xiaoxiao ; Abegglen, Caleb J ; Qu, Huainan ; Qu, Deyang</creator><creatorcontrib>Li, Feifei ; Wang, Gongwei ; Zheng, Dong ; Zhang, Xiaoxiao ; Abegglen, Caleb J ; Qu, Huainan ; Qu, Deyang</creatorcontrib><description>SnO
is an attractive anodic material for advanced lithium-ion batteries (LIBs). However, its low electronic conductivity and large volume change in lithiation/delithiation lead to a poor rate/cycling performance. Moreover, the initial Coulombic efficiencies (CEs) of SnO
anodes are usually too low to build practical full LIBs. Herein, a two-step hydrothermal synthesis and pyrolysis method is used to prepare a SnO
/C nanocomposite, in which aggregated SnO
nanosheets and a carbon network are well-interpenetrated with each other. The SnO
/C nanocomposite exhibits a good rate/cycling performance in half-cell tests but still shows a low initial CE of 45%. To overcome this shortage and realize its application in a full-cell assembly, the SnO
/C anode is controllably prelithiated by the lithium-biphenyl reagent and then coupled with a LiCoO
cathode. The resulting full LIB displays a high capacity of over 98 mAh g
in 300 cycles at 1 C rate.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c00729</identifier><identifier>PMID: 32264670</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials & interfaces, 2020-04, Vol.12 (17), p.19423-19430</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1070-83c943191c070293a661666f2d11517c8c7e42c06fa865de5dc85b3955b3e8d93</citedby><cites>FETCH-LOGICAL-c1070-83c943191c070293a661666f2d11517c8c7e42c06fa865de5dc85b3955b3e8d93</cites><orcidid>0000-0003-3413-6574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32264670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Feifei</creatorcontrib><creatorcontrib>Wang, Gongwei</creatorcontrib><creatorcontrib>Zheng, Dong</creatorcontrib><creatorcontrib>Zhang, Xiaoxiao</creatorcontrib><creatorcontrib>Abegglen, Caleb J</creatorcontrib><creatorcontrib>Qu, Huainan</creatorcontrib><creatorcontrib>Qu, Deyang</creatorcontrib><title>Controlled Prelithiation of SnO 2 /C Nanocomposite Anodes for Building Full Lithium-Ion Batteries</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>SnO
is an attractive anodic material for advanced lithium-ion batteries (LIBs). However, its low electronic conductivity and large volume change in lithiation/delithiation lead to a poor rate/cycling performance. Moreover, the initial Coulombic efficiencies (CEs) of SnO
anodes are usually too low to build practical full LIBs. Herein, a two-step hydrothermal synthesis and pyrolysis method is used to prepare a SnO
/C nanocomposite, in which aggregated SnO
nanosheets and a carbon network are well-interpenetrated with each other. The SnO
/C nanocomposite exhibits a good rate/cycling performance in half-cell tests but still shows a low initial CE of 45%. To overcome this shortage and realize its application in a full-cell assembly, the SnO
/C anode is controllably prelithiated by the lithium-biphenyl reagent and then coupled with a LiCoO
cathode. The resulting full LIB displays a high capacity of over 98 mAh g
in 300 cycles at 1 C rate.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqWwZYn8A2n9TrxsIwqVIooErCPXdsDIiSs7WfD3TdXSzdwZac5dHAAeMZpjRPBC6aRaN0caoZzIKzDFkrGsIJxcX3bGJuAupV-EBCWI34IJJUQwkaMpUGXo-hi8twa-R-td_-NU70IHQwM_ui0kcFHCN9UFHdp9SK63cNkFYxNsQoSrwXnjum-4HryH1ZEe2mwz4ivV9zY6m-7BTaN8sg_nnIGv9fNn-ZpV25dNuawyjVGOsoJqySiWWI8XkVQJgYUQDTEYc5zrQueWEY1EowrBjeVGF3xHJR-HLYykMzA_9eoYUoq2qffRtSr-1RjVR1f1yVV9djUCTydgP-xaay7v_3LoAT2KZTY</recordid><startdate>20200429</startdate><enddate>20200429</enddate><creator>Li, Feifei</creator><creator>Wang, Gongwei</creator><creator>Zheng, Dong</creator><creator>Zhang, Xiaoxiao</creator><creator>Abegglen, Caleb J</creator><creator>Qu, Huainan</creator><creator>Qu, Deyang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3413-6574</orcidid></search><sort><creationdate>20200429</creationdate><title>Controlled Prelithiation of SnO 2 /C Nanocomposite Anodes for Building Full Lithium-Ion Batteries</title><author>Li, Feifei ; Wang, Gongwei ; Zheng, Dong ; Zhang, Xiaoxiao ; Abegglen, Caleb J ; Qu, Huainan ; Qu, Deyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1070-83c943191c070293a661666f2d11517c8c7e42c06fa865de5dc85b3955b3e8d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Feifei</creatorcontrib><creatorcontrib>Wang, Gongwei</creatorcontrib><creatorcontrib>Zheng, Dong</creatorcontrib><creatorcontrib>Zhang, Xiaoxiao</creatorcontrib><creatorcontrib>Abegglen, Caleb J</creatorcontrib><creatorcontrib>Qu, Huainan</creatorcontrib><creatorcontrib>Qu, Deyang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Feifei</au><au>Wang, Gongwei</au><au>Zheng, Dong</au><au>Zhang, Xiaoxiao</au><au>Abegglen, Caleb J</au><au>Qu, Huainan</au><au>Qu, Deyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Prelithiation of SnO 2 /C Nanocomposite Anodes for Building Full Lithium-Ion Batteries</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2020-04-29</date><risdate>2020</risdate><volume>12</volume><issue>17</issue><spage>19423</spage><epage>19430</epage><pages>19423-19430</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>SnO
is an attractive anodic material for advanced lithium-ion batteries (LIBs). However, its low electronic conductivity and large volume change in lithiation/delithiation lead to a poor rate/cycling performance. Moreover, the initial Coulombic efficiencies (CEs) of SnO
anodes are usually too low to build practical full LIBs. Herein, a two-step hydrothermal synthesis and pyrolysis method is used to prepare a SnO
/C nanocomposite, in which aggregated SnO
nanosheets and a carbon network are well-interpenetrated with each other. The SnO
/C nanocomposite exhibits a good rate/cycling performance in half-cell tests but still shows a low initial CE of 45%. To overcome this shortage and realize its application in a full-cell assembly, the SnO
/C anode is controllably prelithiated by the lithium-biphenyl reagent and then coupled with a LiCoO
cathode. The resulting full LIB displays a high capacity of over 98 mAh g
in 300 cycles at 1 C rate.</abstract><cop>United States</cop><pmid>32264670</pmid><doi>10.1021/acsami.0c00729</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3413-6574</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-04, Vol.12 (17), p.19423-19430 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_0c00729 |
source | ACS Publications |
title | Controlled Prelithiation of SnO 2 /C Nanocomposite Anodes for Building Full Lithium-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A07%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Prelithiation%20of%20SnO%202%20/C%20Nanocomposite%20Anodes%20for%20Building%20Full%20Lithium-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Feifei&rft.date=2020-04-29&rft.volume=12&rft.issue=17&rft.spage=19423&rft.epage=19430&rft.pages=19423-19430&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c00729&rft_dat=%3Cpubmed_cross%3E32264670%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32264670&rfr_iscdi=true |