Water-Stable Cathode for High Rate Na-Ion Batteries
Most of sodium-layered oxide cathodes are unstable under moisture conditions. As a unique water-stable cathode, Na2/3Ni1/3Mn2/3O2 (NNM) usually becomes vulnerable to water molecules after element substitution treatment to suppress the Na+ vacancy ordering arrangement, which causes limited Na+ diffus...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-04, Vol.12 (13), p.15220-15227 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15227 |
---|---|
container_issue | 13 |
container_start_page | 15220 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Zhang, Yi Wu, Miaomiao Teng, Wei Ma, Jiwei Zhang, Renyuan Huang, Yunhui |
description | Most of sodium-layered oxide cathodes are unstable under moisture conditions. As a unique water-stable cathode, Na2/3Ni1/3Mn2/3O2 (NNM) usually becomes vulnerable to water molecules after element substitution treatment to suppress the Na+ vacancy ordering arrangement, which causes limited Na+ diffusion kinetics. Herein, we show that these issues can be addressed simultaneously by rational designing the transition-metal (TM) layer to achieve both water-stable and Na+ vacancy disordering structures. Density functional theory calculations reveal that the water-stability of the layered oxide cathode can be correlated to the surface adsorption energy of H2O molecules. In the TM layer, the Co/Mn and Fe/Mn units exhibit a much lower adsorption energy than that of the Li/Mn unit, and hence the H2O molecule prefers to be absorbed on Co/Mn and Fe/Mn units rather than Li/Mn. Moreover, the Li/Mn unit in the TM layer can suppress the Na+ vacancy ordering structure in NNM to improve the Na+ diffusion kinetics. As a consequence, the well-designed Na2/3Li1/9Ni5/18Mn2/3O2 cathode can not only maintain its original crystal structure and electrochemical property after water soaking treatment but also exhibit high rate capability (78% capacity retention at 20 C) and excellent cycling stability (87% capacity retention after 1000 cycles). |
doi_str_mv | 10.1021/acsami.0c00386 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c00386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d29722283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-93c8717edd8d995ec71c291e0cd9f0352f534ef42b2b28c53997865b3e238d03</originalsourceid><addsrcrecordid>eNp1j0FLAzEQRoMotlavHiVnIesk2ewmRy3VFoqCFjyGbJK1W7rdkmwP_nsjW3uTOczAvG-Yh9AthYwCow_GRtM2GVgALoszNKYqz4lkgp2f5jwfoasYNwAFZyAu0YgzWjAFbIz4p-l9IB-9qbYeT02_7pzHdRfwvPla4_e0xa-GLLodfjJ9Qhsfr9FFbbbR3xz7BK2eZ6vpnCzfXhbTxyUxXBU9UdzKkpbeOemUEt6W1DJFPVinauCC1YLnvs5ZlUpawZUqZSEq7hmXDvgEZcNZG7oYg6_1PjStCd-agv6V14O8PsqnwN0Q2B-q1rsT_mebgPsBSEG96Q5hl97_79oPc7hiEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Water-Stable Cathode for High Rate Na-Ion Batteries</title><source>ACS Publications</source><creator>Zhang, Yi ; Wu, Miaomiao ; Teng, Wei ; Ma, Jiwei ; Zhang, Renyuan ; Huang, Yunhui</creator><creatorcontrib>Zhang, Yi ; Wu, Miaomiao ; Teng, Wei ; Ma, Jiwei ; Zhang, Renyuan ; Huang, Yunhui</creatorcontrib><description>Most of sodium-layered oxide cathodes are unstable under moisture conditions. As a unique water-stable cathode, Na2/3Ni1/3Mn2/3O2 (NNM) usually becomes vulnerable to water molecules after element substitution treatment to suppress the Na+ vacancy ordering arrangement, which causes limited Na+ diffusion kinetics. Herein, we show that these issues can be addressed simultaneously by rational designing the transition-metal (TM) layer to achieve both water-stable and Na+ vacancy disordering structures. Density functional theory calculations reveal that the water-stability of the layered oxide cathode can be correlated to the surface adsorption energy of H2O molecules. In the TM layer, the Co/Mn and Fe/Mn units exhibit a much lower adsorption energy than that of the Li/Mn unit, and hence the H2O molecule prefers to be absorbed on Co/Mn and Fe/Mn units rather than Li/Mn. Moreover, the Li/Mn unit in the TM layer can suppress the Na+ vacancy ordering structure in NNM to improve the Na+ diffusion kinetics. As a consequence, the well-designed Na2/3Li1/9Ni5/18Mn2/3O2 cathode can not only maintain its original crystal structure and electrochemical property after water soaking treatment but also exhibit high rate capability (78% capacity retention at 20 C) and excellent cycling stability (87% capacity retention after 1000 cycles).</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c00386</identifier><identifier>PMID: 32162902</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2020-04, Vol.12 (13), p.15220-15227</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-93c8717edd8d995ec71c291e0cd9f0352f534ef42b2b28c53997865b3e238d03</citedby><cites>FETCH-LOGICAL-a396t-93c8717edd8d995ec71c291e0cd9f0352f534ef42b2b28c53997865b3e238d03</cites><orcidid>0000-0003-1380-9207 ; 0000-0003-4209-7667 ; 0000-0001-5979-5512 ; 0000-0003-1687-1938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c00386$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c00386$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32162902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Wu, Miaomiao</creatorcontrib><creatorcontrib>Teng, Wei</creatorcontrib><creatorcontrib>Ma, Jiwei</creatorcontrib><creatorcontrib>Zhang, Renyuan</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><title>Water-Stable Cathode for High Rate Na-Ion Batteries</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Most of sodium-layered oxide cathodes are unstable under moisture conditions. As a unique water-stable cathode, Na2/3Ni1/3Mn2/3O2 (NNM) usually becomes vulnerable to water molecules after element substitution treatment to suppress the Na+ vacancy ordering arrangement, which causes limited Na+ diffusion kinetics. Herein, we show that these issues can be addressed simultaneously by rational designing the transition-metal (TM) layer to achieve both water-stable and Na+ vacancy disordering structures. Density functional theory calculations reveal that the water-stability of the layered oxide cathode can be correlated to the surface adsorption energy of H2O molecules. In the TM layer, the Co/Mn and Fe/Mn units exhibit a much lower adsorption energy than that of the Li/Mn unit, and hence the H2O molecule prefers to be absorbed on Co/Mn and Fe/Mn units rather than Li/Mn. Moreover, the Li/Mn unit in the TM layer can suppress the Na+ vacancy ordering structure in NNM to improve the Na+ diffusion kinetics. As a consequence, the well-designed Na2/3Li1/9Ni5/18Mn2/3O2 cathode can not only maintain its original crystal structure and electrochemical property after water soaking treatment but also exhibit high rate capability (78% capacity retention at 20 C) and excellent cycling stability (87% capacity retention after 1000 cycles).</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLAzEQRoMotlavHiVnIesk2ewmRy3VFoqCFjyGbJK1W7rdkmwP_nsjW3uTOczAvG-Yh9AthYwCow_GRtM2GVgALoszNKYqz4lkgp2f5jwfoasYNwAFZyAu0YgzWjAFbIz4p-l9IB-9qbYeT02_7pzHdRfwvPla4_e0xa-GLLodfjJ9Qhsfr9FFbbbR3xz7BK2eZ6vpnCzfXhbTxyUxXBU9UdzKkpbeOemUEt6W1DJFPVinauCC1YLnvs5ZlUpawZUqZSEq7hmXDvgEZcNZG7oYg6_1PjStCd-agv6V14O8PsqnwN0Q2B-q1rsT_mebgPsBSEG96Q5hl97_79oPc7hiEQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Zhang, Yi</creator><creator>Wu, Miaomiao</creator><creator>Teng, Wei</creator><creator>Ma, Jiwei</creator><creator>Zhang, Renyuan</creator><creator>Huang, Yunhui</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1380-9207</orcidid><orcidid>https://orcid.org/0000-0003-4209-7667</orcidid><orcidid>https://orcid.org/0000-0001-5979-5512</orcidid><orcidid>https://orcid.org/0000-0003-1687-1938</orcidid></search><sort><creationdate>20200401</creationdate><title>Water-Stable Cathode for High Rate Na-Ion Batteries</title><author>Zhang, Yi ; Wu, Miaomiao ; Teng, Wei ; Ma, Jiwei ; Zhang, Renyuan ; Huang, Yunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-93c8717edd8d995ec71c291e0cd9f0352f534ef42b2b28c53997865b3e238d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Wu, Miaomiao</creatorcontrib><creatorcontrib>Teng, Wei</creatorcontrib><creatorcontrib>Ma, Jiwei</creatorcontrib><creatorcontrib>Zhang, Renyuan</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yi</au><au>Wu, Miaomiao</au><au>Teng, Wei</au><au>Ma, Jiwei</au><au>Zhang, Renyuan</au><au>Huang, Yunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water-Stable Cathode for High Rate Na-Ion Batteries</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>12</volume><issue>13</issue><spage>15220</spage><epage>15227</epage><pages>15220-15227</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Most of sodium-layered oxide cathodes are unstable under moisture conditions. As a unique water-stable cathode, Na2/3Ni1/3Mn2/3O2 (NNM) usually becomes vulnerable to water molecules after element substitution treatment to suppress the Na+ vacancy ordering arrangement, which causes limited Na+ diffusion kinetics. Herein, we show that these issues can be addressed simultaneously by rational designing the transition-metal (TM) layer to achieve both water-stable and Na+ vacancy disordering structures. Density functional theory calculations reveal that the water-stability of the layered oxide cathode can be correlated to the surface adsorption energy of H2O molecules. In the TM layer, the Co/Mn and Fe/Mn units exhibit a much lower adsorption energy than that of the Li/Mn unit, and hence the H2O molecule prefers to be absorbed on Co/Mn and Fe/Mn units rather than Li/Mn. Moreover, the Li/Mn unit in the TM layer can suppress the Na+ vacancy ordering structure in NNM to improve the Na+ diffusion kinetics. As a consequence, the well-designed Na2/3Li1/9Ni5/18Mn2/3O2 cathode can not only maintain its original crystal structure and electrochemical property after water soaking treatment but also exhibit high rate capability (78% capacity retention at 20 C) and excellent cycling stability (87% capacity retention after 1000 cycles).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32162902</pmid><doi>10.1021/acsami.0c00386</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1380-9207</orcidid><orcidid>https://orcid.org/0000-0003-4209-7667</orcidid><orcidid>https://orcid.org/0000-0001-5979-5512</orcidid><orcidid>https://orcid.org/0000-0003-1687-1938</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-04, Vol.12 (13), p.15220-15227 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_0c00386 |
source | ACS Publications |
title | Water-Stable Cathode for High Rate Na-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water-Stable%20Cathode%20for%20High%20Rate%20Na-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Yi&rft.date=2020-04-01&rft.volume=12&rft.issue=13&rft.spage=15220&rft.epage=15227&rft.pages=15220-15227&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c00386&rft_dat=%3Cacs_cross%3Ed29722283%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32162902&rfr_iscdi=true |