Flexible Solid Electrolytes from Two-Dimensional Metal Carbide, Polymer, and Ionic Covalent Organic Frameworks

As the demand for mobile electronic devices continues to grow, the development of all-solid-state lithium metal batteries has emerged as a promising solution to reduce the safety risks associated with conventional lithium-ion batteries. Herein, we introduce an approach to preparing a composite solid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied engineering materials 2025-01, Vol.3 (1), p.64-74
Hauptverfasser: Serajian, Sahand, Gnani Peer Mohamed, Syed Ibrahim, Shaban, Mahmoud M., Voigt, Jacob, Quirie, Micah, Morton, Martha, Nejati, Siamak, Bavarian, Mona
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 1
container_start_page 64
container_title ACS applied engineering materials
container_volume 3
creator Serajian, Sahand
Gnani Peer Mohamed, Syed Ibrahim
Shaban, Mahmoud M.
Voigt, Jacob
Quirie, Micah
Morton, Martha
Nejati, Siamak
Bavarian, Mona
description As the demand for mobile electronic devices continues to grow, the development of all-solid-state lithium metal batteries has emerged as a promising solution to reduce the safety risks associated with conventional lithium-ion batteries. Herein, we introduce an approach to preparing a composite solid-state electrolyte by integrating two-dimensional (2D) MXenes with cationic covalent organic frameworks (cCOFs). These frameworks are based on ethidium bromide (EB-cCOF) and porphyrin (POR-cCOF), and are incorporated into the poly­(ethylene oxide) (PEO)-based solid electrolytes. The synthesized MXenes and cCOFs serve as multifunctional additives, reducing the PEO crystallinity and enhancing segmental motion. We observed a synergistic effect when COFs and MXene were used in preparing electrolytes, highlighted in the observed increase in the ionic conductivity at room temperature. Additionally, the electrolyte exhibits improved thermal stability up to ≈380 °C and retains ≈9% more residual mass at 1000 °C. These results highlight the potential of hybrid solid electrolytes as promising candidates for advancing high-performance solid-state batteries.
doi_str_mv 10.1021/acsaenm.4c00544
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaenm_4c00544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d050425716</sourcerecordid><originalsourceid>FETCH-LOGICAL-a161t-b4dec7f1fd4a890e08e5af8a6d7fd2a1331b96d8d542ad79ae531d0534d2add63</originalsourceid><addsrcrecordid>eNp1kM1PwzAMxSMEEtPYmWvurFvSpl9HVDaYNDQkxrlyGwdlpAlKCmP_PZ22AxcutuX3niX_CLnlbMZZzOfQBkDbzUTLWCrEBRnFec6jMhXp5Z_5mkxC2DHGkpjzMstHxC4N_ujGIH11Rku6MNj23plDj4Eq7zq63bvoQXdog3YWDH3GfqgV-EZLnNKXwduhn1Kwkq6c1S2t3DcYtD3d-Hc4LpYeOtw7_xFuyJUCE3By7mPytlxsq6dovXlcVffrCHjG-6gREttccSUFFCVDVmAKqoBM5krGwJOEN2UmC5mKGGReAqYJlyxNxKBKmSVjMj_dbb0LwaOqP73uwB9qzuojsfpMrD4TGxJ3p8Qg1Dv35Ydfw7_uXxmvcKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flexible Solid Electrolytes from Two-Dimensional Metal Carbide, Polymer, and Ionic Covalent Organic Frameworks</title><source>ACS Publications</source><creator>Serajian, Sahand ; Gnani Peer Mohamed, Syed Ibrahim ; Shaban, Mahmoud M. ; Voigt, Jacob ; Quirie, Micah ; Morton, Martha ; Nejati, Siamak ; Bavarian, Mona</creator><creatorcontrib>Serajian, Sahand ; Gnani Peer Mohamed, Syed Ibrahim ; Shaban, Mahmoud M. ; Voigt, Jacob ; Quirie, Micah ; Morton, Martha ; Nejati, Siamak ; Bavarian, Mona</creatorcontrib><description>As the demand for mobile electronic devices continues to grow, the development of all-solid-state lithium metal batteries has emerged as a promising solution to reduce the safety risks associated with conventional lithium-ion batteries. Herein, we introduce an approach to preparing a composite solid-state electrolyte by integrating two-dimensional (2D) MXenes with cationic covalent organic frameworks (cCOFs). These frameworks are based on ethidium bromide (EB-cCOF) and porphyrin (POR-cCOF), and are incorporated into the poly­(ethylene oxide) (PEO)-based solid electrolytes. The synthesized MXenes and cCOFs serve as multifunctional additives, reducing the PEO crystallinity and enhancing segmental motion. We observed a synergistic effect when COFs and MXene were used in preparing electrolytes, highlighted in the observed increase in the ionic conductivity at room temperature. Additionally, the electrolyte exhibits improved thermal stability up to ≈380 °C and retains ≈9% more residual mass at 1000 °C. These results highlight the potential of hybrid solid electrolytes as promising candidates for advancing high-performance solid-state batteries.</description><identifier>ISSN: 2771-9545</identifier><identifier>EISSN: 2771-9545</identifier><identifier>DOI: 10.1021/acsaenm.4c00544</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied engineering materials, 2025-01, Vol.3 (1), p.64-74</ispartof><rights>2024 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a161t-b4dec7f1fd4a890e08e5af8a6d7fd2a1331b96d8d542ad79ae531d0534d2add63</cites><orcidid>0000-0001-7689-773X ; 0000-0002-6411-1733 ; 0000-0002-1807-2796 ; 0000-0001-9460-8620 ; 0000-0003-3667-2768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaenm.4c00544$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaenm.4c00544$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Serajian, Sahand</creatorcontrib><creatorcontrib>Gnani Peer Mohamed, Syed Ibrahim</creatorcontrib><creatorcontrib>Shaban, Mahmoud M.</creatorcontrib><creatorcontrib>Voigt, Jacob</creatorcontrib><creatorcontrib>Quirie, Micah</creatorcontrib><creatorcontrib>Morton, Martha</creatorcontrib><creatorcontrib>Nejati, Siamak</creatorcontrib><creatorcontrib>Bavarian, Mona</creatorcontrib><title>Flexible Solid Electrolytes from Two-Dimensional Metal Carbide, Polymer, and Ionic Covalent Organic Frameworks</title><title>ACS applied engineering materials</title><addtitle>ACS Appl. Eng. Mater</addtitle><description>As the demand for mobile electronic devices continues to grow, the development of all-solid-state lithium metal batteries has emerged as a promising solution to reduce the safety risks associated with conventional lithium-ion batteries. Herein, we introduce an approach to preparing a composite solid-state electrolyte by integrating two-dimensional (2D) MXenes with cationic covalent organic frameworks (cCOFs). These frameworks are based on ethidium bromide (EB-cCOF) and porphyrin (POR-cCOF), and are incorporated into the poly­(ethylene oxide) (PEO)-based solid electrolytes. The synthesized MXenes and cCOFs serve as multifunctional additives, reducing the PEO crystallinity and enhancing segmental motion. We observed a synergistic effect when COFs and MXene were used in preparing electrolytes, highlighted in the observed increase in the ionic conductivity at room temperature. Additionally, the electrolyte exhibits improved thermal stability up to ≈380 °C and retains ≈9% more residual mass at 1000 °C. These results highlight the potential of hybrid solid electrolytes as promising candidates for advancing high-performance solid-state batteries.</description><issn>2771-9545</issn><issn>2771-9545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PwzAMxSMEEtPYmWvurFvSpl9HVDaYNDQkxrlyGwdlpAlKCmP_PZ22AxcutuX3niX_CLnlbMZZzOfQBkDbzUTLWCrEBRnFec6jMhXp5Z_5mkxC2DHGkpjzMstHxC4N_ujGIH11Rku6MNj23plDj4Eq7zq63bvoQXdog3YWDH3GfqgV-EZLnNKXwduhn1Kwkq6c1S2t3DcYtD3d-Hc4LpYeOtw7_xFuyJUCE3By7mPytlxsq6dovXlcVffrCHjG-6gREttccSUFFCVDVmAKqoBM5krGwJOEN2UmC5mKGGReAqYJlyxNxKBKmSVjMj_dbb0LwaOqP73uwB9qzuojsfpMrD4TGxJ3p8Qg1Dv35Ydfw7_uXxmvcKc</recordid><startdate>20250124</startdate><enddate>20250124</enddate><creator>Serajian, Sahand</creator><creator>Gnani Peer Mohamed, Syed Ibrahim</creator><creator>Shaban, Mahmoud M.</creator><creator>Voigt, Jacob</creator><creator>Quirie, Micah</creator><creator>Morton, Martha</creator><creator>Nejati, Siamak</creator><creator>Bavarian, Mona</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7689-773X</orcidid><orcidid>https://orcid.org/0000-0002-6411-1733</orcidid><orcidid>https://orcid.org/0000-0002-1807-2796</orcidid><orcidid>https://orcid.org/0000-0001-9460-8620</orcidid><orcidid>https://orcid.org/0000-0003-3667-2768</orcidid></search><sort><creationdate>20250124</creationdate><title>Flexible Solid Electrolytes from Two-Dimensional Metal Carbide, Polymer, and Ionic Covalent Organic Frameworks</title><author>Serajian, Sahand ; Gnani Peer Mohamed, Syed Ibrahim ; Shaban, Mahmoud M. ; Voigt, Jacob ; Quirie, Micah ; Morton, Martha ; Nejati, Siamak ; Bavarian, Mona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a161t-b4dec7f1fd4a890e08e5af8a6d7fd2a1331b96d8d542ad79ae531d0534d2add63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Serajian, Sahand</creatorcontrib><creatorcontrib>Gnani Peer Mohamed, Syed Ibrahim</creatorcontrib><creatorcontrib>Shaban, Mahmoud M.</creatorcontrib><creatorcontrib>Voigt, Jacob</creatorcontrib><creatorcontrib>Quirie, Micah</creatorcontrib><creatorcontrib>Morton, Martha</creatorcontrib><creatorcontrib>Nejati, Siamak</creatorcontrib><creatorcontrib>Bavarian, Mona</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serajian, Sahand</au><au>Gnani Peer Mohamed, Syed Ibrahim</au><au>Shaban, Mahmoud M.</au><au>Voigt, Jacob</au><au>Quirie, Micah</au><au>Morton, Martha</au><au>Nejati, Siamak</au><au>Bavarian, Mona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Solid Electrolytes from Two-Dimensional Metal Carbide, Polymer, and Ionic Covalent Organic Frameworks</atitle><jtitle>ACS applied engineering materials</jtitle><addtitle>ACS Appl. Eng. Mater</addtitle><date>2025-01-24</date><risdate>2025</risdate><volume>3</volume><issue>1</issue><spage>64</spage><epage>74</epage><pages>64-74</pages><issn>2771-9545</issn><eissn>2771-9545</eissn><abstract>As the demand for mobile electronic devices continues to grow, the development of all-solid-state lithium metal batteries has emerged as a promising solution to reduce the safety risks associated with conventional lithium-ion batteries. Herein, we introduce an approach to preparing a composite solid-state electrolyte by integrating two-dimensional (2D) MXenes with cationic covalent organic frameworks (cCOFs). These frameworks are based on ethidium bromide (EB-cCOF) and porphyrin (POR-cCOF), and are incorporated into the poly­(ethylene oxide) (PEO)-based solid electrolytes. The synthesized MXenes and cCOFs serve as multifunctional additives, reducing the PEO crystallinity and enhancing segmental motion. We observed a synergistic effect when COFs and MXene were used in preparing electrolytes, highlighted in the observed increase in the ionic conductivity at room temperature. Additionally, the electrolyte exhibits improved thermal stability up to ≈380 °C and retains ≈9% more residual mass at 1000 °C. These results highlight the potential of hybrid solid electrolytes as promising candidates for advancing high-performance solid-state batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaenm.4c00544</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7689-773X</orcidid><orcidid>https://orcid.org/0000-0002-6411-1733</orcidid><orcidid>https://orcid.org/0000-0002-1807-2796</orcidid><orcidid>https://orcid.org/0000-0001-9460-8620</orcidid><orcidid>https://orcid.org/0000-0003-3667-2768</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2771-9545
ispartof ACS applied engineering materials, 2025-01, Vol.3 (1), p.64-74
issn 2771-9545
2771-9545
language eng
recordid cdi_crossref_primary_10_1021_acsaenm_4c00544
source ACS Publications
title Flexible Solid Electrolytes from Two-Dimensional Metal Carbide, Polymer, and Ionic Covalent Organic Frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Solid%20Electrolytes%20from%20Two-Dimensional%20Metal%20Carbide,%20Polymer,%20and%20Ionic%20Covalent%20Organic%20Frameworks&rft.jtitle=ACS%20applied%20engineering%20materials&rft.au=Serajian,%20Sahand&rft.date=2025-01-24&rft.volume=3&rft.issue=1&rft.spage=64&rft.epage=74&rft.pages=64-74&rft.issn=2771-9545&rft.eissn=2771-9545&rft_id=info:doi/10.1021/acsaenm.4c00544&rft_dat=%3Cacs_cross%3Ed050425716%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true