Carbon Dioxide Removal from Humid Atmosphere by a Porous Hierarchical Silicoaluminophosphate/Carbon Composite Adsorbent

A chabazite-type silicoaluminophosphate (SAPO-34) was grown within the meso- and macropores of activated carbon (AC) via a confined space synthesis and functionalized via the addition of strontium­(II) (i.e., Sr2+-CSAPO-34) for the selective adsorption of CO2 in the presence of humidity. The in situ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS Applied Engineering Materials 2023-02, Vol.1 (2), p.790-801
Hauptverfasser: del Valle-Pérez, Gabriela C., Muñoz-Senmache, Juan C., Cruz-Tato, Perla E., Nicolau, Eduardo, Hernández-Maldonado, Arturo J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 801
container_issue 2
container_start_page 790
container_title ACS Applied Engineering Materials
container_volume 1
creator del Valle-Pérez, Gabriela C.
Muñoz-Senmache, Juan C.
Cruz-Tato, Perla E.
Nicolau, Eduardo
Hernández-Maldonado, Arturo J.
description A chabazite-type silicoaluminophosphate (SAPO-34) was grown within the meso- and macropores of activated carbon (AC) via a confined space synthesis and functionalized via the addition of strontium­(II) (i.e., Sr2+-CSAPO-34) for the selective adsorption of CO2 in the presence of humidity. The in situ growth of the SAPO phase was corroborated through SEM/EDAX, XRD, and pore size distribution profiles. About 80% of the meso- and macropores of AC were occupied by the SAPO. Sr2+-CSAPO-34 was further characterized via XRD, TGA, ICP-OES, and water contact angle measurements. A physical mixture of Sr2+-SAPO-34 and AC was also prepared to contrast against the hierarchical variant. The selectivity and capacity for trace CO2 removal were evaluated through single-component equilibrium and multicomponent fixed-bed adsorption. Bed tests (v = 200 mL min–1 and C i = 500, 1000, or 2500 ppm) showed that the CO2 capacity remains in the presence of 90% relative humidity, with no signs of roll-up. Specifically, the uptake capacity of the Sr2+-CSAPO-34 bed for a CO2 feed content of 1000 ppm was 0.11 mmol per cm3 of bed and with a breakthrough point greater than 2000 bed volumes; this is superior compared to other adsorbents for CO2 capture under humid conditions. The Sr2+-CSAPO-34 composite bed was also subjected to various cycles upon vacuum-assisted thermal regeneration, and no decrease in adsorption capacity was observed. The adsorbent hierarchical design approach showed that a synergistic combination of hydrophobicity and enhanced adsorbate–adsorbent interactions at the physisorption level is a promising strategy for removing trace CO2 under humid conditions.
doi_str_mv 10.1021/acsaenm.2c00208
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaenm_2c00208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c549078601</sourcerecordid><originalsourceid>FETCH-LOGICAL-a207t-c9b0fea338b87ebd5f01ba6b95af4bde3c5d44277fd26a2ab55dcf5bbea751453</originalsourceid><addsrcrecordid>eNp1kEtrwzAQhEVpoSHNuVfdixPJtmLnGNxHCoGWPs5mJa2IimUZyWmbfx-H-NBLT7uw3ww7Q8gtZ3POUr4AFQFbN08VYykrL8gkLQqerEQuLv_s12QWo5VMsLzk-VJMyE8FQfqW3lv_azXSN3T-Gxpqgnd0s3dW03XvfOx2GJDKAwX66oPfR7qxGCConVUD_m4bqzw0g6D13e7EQ4-L0bzyrvPR9kjXOvogse1vyJWBJuJsnFPy-fjwUW2S7cvTc7XeJpCyok_USjKDkGWlLAuUWhjGJSzlSoDJpcZMCZ3nQz6j0yWkIIXQyggpEQrBc5FNyeLsq4KPMaCpu2AdhEPNWX2qrh6rq8fqBsXdWTEc6i-_D-3w37_0ERXTdb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Carbon Dioxide Removal from Humid Atmosphere by a Porous Hierarchical Silicoaluminophosphate/Carbon Composite Adsorbent</title><source>American Chemical Society Journals</source><creator>del Valle-Pérez, Gabriela C. ; Muñoz-Senmache, Juan C. ; Cruz-Tato, Perla E. ; Nicolau, Eduardo ; Hernández-Maldonado, Arturo J.</creator><creatorcontrib>del Valle-Pérez, Gabriela C. ; Muñoz-Senmache, Juan C. ; Cruz-Tato, Perla E. ; Nicolau, Eduardo ; Hernández-Maldonado, Arturo J.</creatorcontrib><description>A chabazite-type silicoaluminophosphate (SAPO-34) was grown within the meso- and macropores of activated carbon (AC) via a confined space synthesis and functionalized via the addition of strontium­(II) (i.e., Sr2+-CSAPO-34) for the selective adsorption of CO2 in the presence of humidity. The in situ growth of the SAPO phase was corroborated through SEM/EDAX, XRD, and pore size distribution profiles. About 80% of the meso- and macropores of AC were occupied by the SAPO. Sr2+-CSAPO-34 was further characterized via XRD, TGA, ICP-OES, and water contact angle measurements. A physical mixture of Sr2+-SAPO-34 and AC was also prepared to contrast against the hierarchical variant. The selectivity and capacity for trace CO2 removal were evaluated through single-component equilibrium and multicomponent fixed-bed adsorption. Bed tests (v = 200 mL min–1 and C i = 500, 1000, or 2500 ppm) showed that the CO2 capacity remains in the presence of 90% relative humidity, with no signs of roll-up. Specifically, the uptake capacity of the Sr2+-CSAPO-34 bed for a CO2 feed content of 1000 ppm was 0.11 mmol per cm3 of bed and with a breakthrough point greater than 2000 bed volumes; this is superior compared to other adsorbents for CO2 capture under humid conditions. The Sr2+-CSAPO-34 composite bed was also subjected to various cycles upon vacuum-assisted thermal regeneration, and no decrease in adsorption capacity was observed. The adsorbent hierarchical design approach showed that a synergistic combination of hydrophobicity and enhanced adsorbate–adsorbent interactions at the physisorption level is a promising strategy for removing trace CO2 under humid conditions.</description><identifier>ISSN: 2771-9545</identifier><identifier>EISSN: 2771-9545</identifier><identifier>DOI: 10.1021/acsaenm.2c00208</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS Applied Engineering Materials, 2023-02, Vol.1 (2), p.790-801</ispartof><rights>2023 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a207t-c9b0fea338b87ebd5f01ba6b95af4bde3c5d44277fd26a2ab55dcf5bbea751453</citedby><cites>FETCH-LOGICAL-a207t-c9b0fea338b87ebd5f01ba6b95af4bde3c5d44277fd26a2ab55dcf5bbea751453</cites><orcidid>0000-0002-6116-029X ; 0000-0001-9379-8987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2751,27903,27904</link.rule.ids></links><search><creatorcontrib>del Valle-Pérez, Gabriela C.</creatorcontrib><creatorcontrib>Muñoz-Senmache, Juan C.</creatorcontrib><creatorcontrib>Cruz-Tato, Perla E.</creatorcontrib><creatorcontrib>Nicolau, Eduardo</creatorcontrib><creatorcontrib>Hernández-Maldonado, Arturo J.</creatorcontrib><title>Carbon Dioxide Removal from Humid Atmosphere by a Porous Hierarchical Silicoaluminophosphate/Carbon Composite Adsorbent</title><title>ACS Applied Engineering Materials</title><addtitle>ACS Appl. Eng. Mater</addtitle><description>A chabazite-type silicoaluminophosphate (SAPO-34) was grown within the meso- and macropores of activated carbon (AC) via a confined space synthesis and functionalized via the addition of strontium­(II) (i.e., Sr2+-CSAPO-34) for the selective adsorption of CO2 in the presence of humidity. The in situ growth of the SAPO phase was corroborated through SEM/EDAX, XRD, and pore size distribution profiles. About 80% of the meso- and macropores of AC were occupied by the SAPO. Sr2+-CSAPO-34 was further characterized via XRD, TGA, ICP-OES, and water contact angle measurements. A physical mixture of Sr2+-SAPO-34 and AC was also prepared to contrast against the hierarchical variant. The selectivity and capacity for trace CO2 removal were evaluated through single-component equilibrium and multicomponent fixed-bed adsorption. Bed tests (v = 200 mL min–1 and C i = 500, 1000, or 2500 ppm) showed that the CO2 capacity remains in the presence of 90% relative humidity, with no signs of roll-up. Specifically, the uptake capacity of the Sr2+-CSAPO-34 bed for a CO2 feed content of 1000 ppm was 0.11 mmol per cm3 of bed and with a breakthrough point greater than 2000 bed volumes; this is superior compared to other adsorbents for CO2 capture under humid conditions. The Sr2+-CSAPO-34 composite bed was also subjected to various cycles upon vacuum-assisted thermal regeneration, and no decrease in adsorption capacity was observed. The adsorbent hierarchical design approach showed that a synergistic combination of hydrophobicity and enhanced adsorbate–adsorbent interactions at the physisorption level is a promising strategy for removing trace CO2 under humid conditions.</description><issn>2771-9545</issn><issn>2771-9545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtrwzAQhEVpoSHNuVfdixPJtmLnGNxHCoGWPs5mJa2IimUZyWmbfx-H-NBLT7uw3ww7Q8gtZ3POUr4AFQFbN08VYykrL8gkLQqerEQuLv_s12QWo5VMsLzk-VJMyE8FQfqW3lv_azXSN3T-Gxpqgnd0s3dW03XvfOx2GJDKAwX66oPfR7qxGCConVUD_m4bqzw0g6D13e7EQ4-L0bzyrvPR9kjXOvogse1vyJWBJuJsnFPy-fjwUW2S7cvTc7XeJpCyok_USjKDkGWlLAuUWhjGJSzlSoDJpcZMCZ3nQz6j0yWkIIXQyggpEQrBc5FNyeLsq4KPMaCpu2AdhEPNWX2qrh6rq8fqBsXdWTEc6i-_D-3w37_0ERXTdb4</recordid><startdate>20230224</startdate><enddate>20230224</enddate><creator>del Valle-Pérez, Gabriela C.</creator><creator>Muñoz-Senmache, Juan C.</creator><creator>Cruz-Tato, Perla E.</creator><creator>Nicolau, Eduardo</creator><creator>Hernández-Maldonado, Arturo J.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6116-029X</orcidid><orcidid>https://orcid.org/0000-0001-9379-8987</orcidid></search><sort><creationdate>20230224</creationdate><title>Carbon Dioxide Removal from Humid Atmosphere by a Porous Hierarchical Silicoaluminophosphate/Carbon Composite Adsorbent</title><author>del Valle-Pérez, Gabriela C. ; Muñoz-Senmache, Juan C. ; Cruz-Tato, Perla E. ; Nicolau, Eduardo ; Hernández-Maldonado, Arturo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a207t-c9b0fea338b87ebd5f01ba6b95af4bde3c5d44277fd26a2ab55dcf5bbea751453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>del Valle-Pérez, Gabriela C.</creatorcontrib><creatorcontrib>Muñoz-Senmache, Juan C.</creatorcontrib><creatorcontrib>Cruz-Tato, Perla E.</creatorcontrib><creatorcontrib>Nicolau, Eduardo</creatorcontrib><creatorcontrib>Hernández-Maldonado, Arturo J.</creatorcontrib><collection>CrossRef</collection><jtitle>ACS Applied Engineering Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>del Valle-Pérez, Gabriela C.</au><au>Muñoz-Senmache, Juan C.</au><au>Cruz-Tato, Perla E.</au><au>Nicolau, Eduardo</au><au>Hernández-Maldonado, Arturo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Dioxide Removal from Humid Atmosphere by a Porous Hierarchical Silicoaluminophosphate/Carbon Composite Adsorbent</atitle><jtitle>ACS Applied Engineering Materials</jtitle><addtitle>ACS Appl. Eng. Mater</addtitle><date>2023-02-24</date><risdate>2023</risdate><volume>1</volume><issue>2</issue><spage>790</spage><epage>801</epage><pages>790-801</pages><issn>2771-9545</issn><eissn>2771-9545</eissn><abstract>A chabazite-type silicoaluminophosphate (SAPO-34) was grown within the meso- and macropores of activated carbon (AC) via a confined space synthesis and functionalized via the addition of strontium­(II) (i.e., Sr2+-CSAPO-34) for the selective adsorption of CO2 in the presence of humidity. The in situ growth of the SAPO phase was corroborated through SEM/EDAX, XRD, and pore size distribution profiles. About 80% of the meso- and macropores of AC were occupied by the SAPO. Sr2+-CSAPO-34 was further characterized via XRD, TGA, ICP-OES, and water contact angle measurements. A physical mixture of Sr2+-SAPO-34 and AC was also prepared to contrast against the hierarchical variant. The selectivity and capacity for trace CO2 removal were evaluated through single-component equilibrium and multicomponent fixed-bed adsorption. Bed tests (v = 200 mL min–1 and C i = 500, 1000, or 2500 ppm) showed that the CO2 capacity remains in the presence of 90% relative humidity, with no signs of roll-up. Specifically, the uptake capacity of the Sr2+-CSAPO-34 bed for a CO2 feed content of 1000 ppm was 0.11 mmol per cm3 of bed and with a breakthrough point greater than 2000 bed volumes; this is superior compared to other adsorbents for CO2 capture under humid conditions. The Sr2+-CSAPO-34 composite bed was also subjected to various cycles upon vacuum-assisted thermal regeneration, and no decrease in adsorption capacity was observed. The adsorbent hierarchical design approach showed that a synergistic combination of hydrophobicity and enhanced adsorbate–adsorbent interactions at the physisorption level is a promising strategy for removing trace CO2 under humid conditions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaenm.2c00208</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6116-029X</orcidid><orcidid>https://orcid.org/0000-0001-9379-8987</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2771-9545
ispartof ACS Applied Engineering Materials, 2023-02, Vol.1 (2), p.790-801
issn 2771-9545
2771-9545
language eng
recordid cdi_crossref_primary_10_1021_acsaenm_2c00208
source American Chemical Society Journals
title Carbon Dioxide Removal from Humid Atmosphere by a Porous Hierarchical Silicoaluminophosphate/Carbon Composite Adsorbent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Dioxide%20Removal%20from%20Humid%20Atmosphere%20by%20a%20Porous%20Hierarchical%20Silicoaluminophosphate/Carbon%20Composite%20Adsorbent&rft.jtitle=ACS%20Applied%20Engineering%20Materials&rft.au=del%20Valle-Pe%CC%81rez,%20Gabriela%20C.&rft.date=2023-02-24&rft.volume=1&rft.issue=2&rft.spage=790&rft.epage=801&rft.pages=790-801&rft.issn=2771-9545&rft.eissn=2771-9545&rft_id=info:doi/10.1021/acsaenm.2c00208&rft_dat=%3Cacs_cross%3Ec549078601%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true