Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells

The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum codeposition of the precursors, a solvent-free technique which can be easily implemented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2020-03, Vol.3 (3), p.2755-2761
Hauptverfasser: Igual-Muñoz, Ana M, Castillo, Aroa, Dreessen, Chris, Boix, Pablo P, Bolink, Henk J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2761
container_issue 3
container_start_page 2755
container_title ACS applied energy materials
container_volume 3
creator Igual-Muñoz, Ana M
Castillo, Aroa
Dreessen, Chris
Boix, Pablo P
Bolink, Henk J
description The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum codeposition of the precursors, a solvent-free technique which can be easily implemented to form complex stacks. Crystallographic and optical characterization reveal the optimal film composition based on cesium and methyl­ammonium monovalent cations. Device optimization makes use of the intrinsically additive nature of vacuum deposition, resulting in solar cells with 8.89% photovoltaic efficiency. The study of the devices by impedance spectroscopy identifies bulk recombination as one of the performance limiting factors.
doi_str_mv 10.1021/acsaem.9b02413
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_9b02413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a943602213</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-d3826977beec19fce41cdd6d26ef27a4975d99fdd9393d24cc8144fda88901d3</originalsourceid><addsrcrecordid>eNp1j0FLxDAUhIMouKx79dyz0Jqk2abvIkjVVagoWLyWbPICXdtmSVrBm__Bf-gvsdI9ePH0hsfMMB8h54wmjHJ2qXRQ2CWwpVyw9Igs-FqKmELGj__oU7IKYUcpZcAyDrAgV69Kj2MX3-DehWZAEz2O7dBoNTSuj6qm__78KlGZ6Bm9ew9vkyV6ca3yUYFtG87IiVVtwNXhLkl1d1sV93H5tHkorstYcSmG2KQ5z0DKLaJmYDUKpo3JDM_QcqkEyLUBsMZACqnhQuucCWGNynOgzKRLksy12rsQPNp675tO-Y-a0fqXv5756wP_FLiYA9O_3rnR99O6_8w_AaNeYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells</title><source>American Chemical Society Web Editions</source><creator>Igual-Muñoz, Ana M ; Castillo, Aroa ; Dreessen, Chris ; Boix, Pablo P ; Bolink, Henk J</creator><creatorcontrib>Igual-Muñoz, Ana M ; Castillo, Aroa ; Dreessen, Chris ; Boix, Pablo P ; Bolink, Henk J</creatorcontrib><description>The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum codeposition of the precursors, a solvent-free technique which can be easily implemented to form complex stacks. Crystallographic and optical characterization reveal the optimal film composition based on cesium and methyl­ammonium monovalent cations. Device optimization makes use of the intrinsically additive nature of vacuum deposition, resulting in solar cells with 8.89% photovoltaic efficiency. The study of the devices by impedance spectroscopy identifies bulk recombination as one of the performance limiting factors.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.9b02413</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2020-03, Vol.3 (3), p.2755-2761</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-d3826977beec19fce41cdd6d26ef27a4975d99fdd9393d24cc8144fda88901d3</citedby><cites>FETCH-LOGICAL-a274t-d3826977beec19fce41cdd6d26ef27a4975d99fdd9393d24cc8144fda88901d3</cites><orcidid>0000-0001-9518-7549 ; 0000-0001-9784-6253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.9b02413$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.9b02413$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Igual-Muñoz, Ana M</creatorcontrib><creatorcontrib>Castillo, Aroa</creatorcontrib><creatorcontrib>Dreessen, Chris</creatorcontrib><creatorcontrib>Boix, Pablo P</creatorcontrib><creatorcontrib>Bolink, Henk J</creatorcontrib><title>Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum codeposition of the precursors, a solvent-free technique which can be easily implemented to form complex stacks. Crystallographic and optical characterization reveal the optimal film composition based on cesium and methyl­ammonium monovalent cations. Device optimization makes use of the intrinsically additive nature of vacuum deposition, resulting in solar cells with 8.89% photovoltaic efficiency. The study of the devices by impedance spectroscopy identifies bulk recombination as one of the performance limiting factors.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLxDAUhIMouKx79dyz0Jqk2abvIkjVVagoWLyWbPICXdtmSVrBm__Bf-gvsdI9ePH0hsfMMB8h54wmjHJ2qXRQ2CWwpVyw9Igs-FqKmELGj__oU7IKYUcpZcAyDrAgV69Kj2MX3-DehWZAEz2O7dBoNTSuj6qm__78KlGZ6Bm9ew9vkyV6ca3yUYFtG87IiVVtwNXhLkl1d1sV93H5tHkorstYcSmG2KQ5z0DKLaJmYDUKpo3JDM_QcqkEyLUBsMZACqnhQuucCWGNynOgzKRLksy12rsQPNp675tO-Y-a0fqXv5756wP_FLiYA9O_3rnR99O6_8w_AaNeYQ</recordid><startdate>20200323</startdate><enddate>20200323</enddate><creator>Igual-Muñoz, Ana M</creator><creator>Castillo, Aroa</creator><creator>Dreessen, Chris</creator><creator>Boix, Pablo P</creator><creator>Bolink, Henk J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9518-7549</orcidid><orcidid>https://orcid.org/0000-0001-9784-6253</orcidid></search><sort><creationdate>20200323</creationdate><title>Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells</title><author>Igual-Muñoz, Ana M ; Castillo, Aroa ; Dreessen, Chris ; Boix, Pablo P ; Bolink, Henk J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-d3826977beec19fce41cdd6d26ef27a4975d99fdd9393d24cc8144fda88901d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Igual-Muñoz, Ana M</creatorcontrib><creatorcontrib>Castillo, Aroa</creatorcontrib><creatorcontrib>Dreessen, Chris</creatorcontrib><creatorcontrib>Boix, Pablo P</creatorcontrib><creatorcontrib>Bolink, Henk J</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Igual-Muñoz, Ana M</au><au>Castillo, Aroa</au><au>Dreessen, Chris</au><au>Boix, Pablo P</au><au>Bolink, Henk J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2020-03-23</date><risdate>2020</risdate><volume>3</volume><issue>3</issue><spage>2755</spage><epage>2761</epage><pages>2755-2761</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum codeposition of the precursors, a solvent-free technique which can be easily implemented to form complex stacks. Crystallographic and optical characterization reveal the optimal film composition based on cesium and methyl­ammonium monovalent cations. Device optimization makes use of the intrinsically additive nature of vacuum deposition, resulting in solar cells with 8.89% photovoltaic efficiency. The study of the devices by impedance spectroscopy identifies bulk recombination as one of the performance limiting factors.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.9b02413</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9518-7549</orcidid><orcidid>https://orcid.org/0000-0001-9784-6253</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2020-03, Vol.3 (3), p.2755-2761
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_9b02413
source American Chemical Society Web Editions
title Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacuum-Deposited%20Multication%20Tin%E2%80%93Lead%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Igual-Mun%CC%83oz,%20Ana%20M&rft.date=2020-03-23&rft.volume=3&rft.issue=3&rft.spage=2755&rft.epage=2761&rft.pages=2755-2761&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.9b02413&rft_dat=%3Cacs_cross%3Ea943602213%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true