Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells
The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum codeposition of the precursors, a solvent-free technique which can be easily implemented...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2020-03, Vol.3 (3), p.2755-2761 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2761 |
---|---|
container_issue | 3 |
container_start_page | 2755 |
container_title | ACS applied energy materials |
container_volume | 3 |
creator | Igual-Muñoz, Ana M Castillo, Aroa Dreessen, Chris Boix, Pablo P Bolink, Henk J |
description | The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum codeposition of the precursors, a solvent-free technique which can be easily implemented to form complex stacks. Crystallographic and optical characterization reveal the optimal film composition based on cesium and methylammonium monovalent cations. Device optimization makes use of the intrinsically additive nature of vacuum deposition, resulting in solar cells with 8.89% photovoltaic efficiency. The study of the devices by impedance spectroscopy identifies bulk recombination as one of the performance limiting factors. |
doi_str_mv | 10.1021/acsaem.9b02413 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_9b02413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a943602213</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-d3826977beec19fce41cdd6d26ef27a4975d99fdd9393d24cc8144fda88901d3</originalsourceid><addsrcrecordid>eNp1j0FLxDAUhIMouKx79dyz0Jqk2abvIkjVVagoWLyWbPICXdtmSVrBm__Bf-gvsdI9ePH0hsfMMB8h54wmjHJ2qXRQ2CWwpVyw9Igs-FqKmELGj__oU7IKYUcpZcAyDrAgV69Kj2MX3-DehWZAEz2O7dBoNTSuj6qm__78KlGZ6Bm9ew9vkyV6ca3yUYFtG87IiVVtwNXhLkl1d1sV93H5tHkorstYcSmG2KQ5z0DKLaJmYDUKpo3JDM_QcqkEyLUBsMZACqnhQuucCWGNynOgzKRLksy12rsQPNp675tO-Y-a0fqXv5756wP_FLiYA9O_3rnR99O6_8w_AaNeYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells</title><source>American Chemical Society Web Editions</source><creator>Igual-Muñoz, Ana M ; Castillo, Aroa ; Dreessen, Chris ; Boix, Pablo P ; Bolink, Henk J</creator><creatorcontrib>Igual-Muñoz, Ana M ; Castillo, Aroa ; Dreessen, Chris ; Boix, Pablo P ; Bolink, Henk J</creatorcontrib><description>The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum codeposition of the precursors, a solvent-free technique which can be easily implemented to form complex stacks. Crystallographic and optical characterization reveal the optimal film composition based on cesium and methylammonium monovalent cations. Device optimization makes use of the intrinsically additive nature of vacuum deposition, resulting in solar cells with 8.89% photovoltaic efficiency. The study of the devices by impedance spectroscopy identifies bulk recombination as one of the performance limiting factors.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.9b02413</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2020-03, Vol.3 (3), p.2755-2761</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-d3826977beec19fce41cdd6d26ef27a4975d99fdd9393d24cc8144fda88901d3</citedby><cites>FETCH-LOGICAL-a274t-d3826977beec19fce41cdd6d26ef27a4975d99fdd9393d24cc8144fda88901d3</cites><orcidid>0000-0001-9518-7549 ; 0000-0001-9784-6253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.9b02413$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.9b02413$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Igual-Muñoz, Ana M</creatorcontrib><creatorcontrib>Castillo, Aroa</creatorcontrib><creatorcontrib>Dreessen, Chris</creatorcontrib><creatorcontrib>Boix, Pablo P</creatorcontrib><creatorcontrib>Bolink, Henk J</creatorcontrib><title>Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum codeposition of the precursors, a solvent-free technique which can be easily implemented to form complex stacks. Crystallographic and optical characterization reveal the optimal film composition based on cesium and methylammonium monovalent cations. Device optimization makes use of the intrinsically additive nature of vacuum deposition, resulting in solar cells with 8.89% photovoltaic efficiency. The study of the devices by impedance spectroscopy identifies bulk recombination as one of the performance limiting factors.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLxDAUhIMouKx79dyz0Jqk2abvIkjVVagoWLyWbPICXdtmSVrBm__Bf-gvsdI9ePH0hsfMMB8h54wmjHJ2qXRQ2CWwpVyw9Igs-FqKmELGj__oU7IKYUcpZcAyDrAgV69Kj2MX3-DehWZAEz2O7dBoNTSuj6qm__78KlGZ6Bm9ew9vkyV6ca3yUYFtG87IiVVtwNXhLkl1d1sV93H5tHkorstYcSmG2KQ5z0DKLaJmYDUKpo3JDM_QcqkEyLUBsMZACqnhQuucCWGNynOgzKRLksy12rsQPNp675tO-Y-a0fqXv5756wP_FLiYA9O_3rnR99O6_8w_AaNeYQ</recordid><startdate>20200323</startdate><enddate>20200323</enddate><creator>Igual-Muñoz, Ana M</creator><creator>Castillo, Aroa</creator><creator>Dreessen, Chris</creator><creator>Boix, Pablo P</creator><creator>Bolink, Henk J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9518-7549</orcidid><orcidid>https://orcid.org/0000-0001-9784-6253</orcidid></search><sort><creationdate>20200323</creationdate><title>Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells</title><author>Igual-Muñoz, Ana M ; Castillo, Aroa ; Dreessen, Chris ; Boix, Pablo P ; Bolink, Henk J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-d3826977beec19fce41cdd6d26ef27a4975d99fdd9393d24cc8144fda88901d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Igual-Muñoz, Ana M</creatorcontrib><creatorcontrib>Castillo, Aroa</creatorcontrib><creatorcontrib>Dreessen, Chris</creatorcontrib><creatorcontrib>Boix, Pablo P</creatorcontrib><creatorcontrib>Bolink, Henk J</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Igual-Muñoz, Ana M</au><au>Castillo, Aroa</au><au>Dreessen, Chris</au><au>Boix, Pablo P</au><au>Bolink, Henk J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2020-03-23</date><risdate>2020</risdate><volume>3</volume><issue>3</issue><spage>2755</spage><epage>2761</epage><pages>2755-2761</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum codeposition of the precursors, a solvent-free technique which can be easily implemented to form complex stacks. Crystallographic and optical characterization reveal the optimal film composition based on cesium and methylammonium monovalent cations. Device optimization makes use of the intrinsically additive nature of vacuum deposition, resulting in solar cells with 8.89% photovoltaic efficiency. The study of the devices by impedance spectroscopy identifies bulk recombination as one of the performance limiting factors.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.9b02413</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9518-7549</orcidid><orcidid>https://orcid.org/0000-0001-9784-6253</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2020-03, Vol.3 (3), p.2755-2761 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsaem_9b02413 |
source | American Chemical Society Web Editions |
title | Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacuum-Deposited%20Multication%20Tin%E2%80%93Lead%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Igual-Mun%CC%83oz,%20Ana%20M&rft.date=2020-03-23&rft.volume=3&rft.issue=3&rft.spage=2755&rft.epage=2761&rft.pages=2755-2761&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.9b02413&rft_dat=%3Cacs_cross%3Ea943602213%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |