Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells

The polymer substrates of flexible solar cell (FSC) electrodes play a crucial role in determining the electrode performance as well as the device performance and reliability. However, most of the FSC electrode polymer substrates suffer from high coefficients of thermal expansion (CTE) and thermal in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2020-01, Vol.3 (1), p.785-793
Hauptverfasser: Wang, Ruiping, Yu, Huang, Dirican, Mahmut, Chen, Linlin, Fang, Dongjun, Tian, Yan, Yan, Chaoyi, Xie, Jingyi, Jia, Dongmei, Liu, Hao, Wang, Jiasheng, Tang, Fangcheng, Asiri, Abdullah M, Zhang, Xiangwu, Tao, Jinsong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 793
container_issue 1
container_start_page 785
container_title ACS applied energy materials
container_volume 3
creator Wang, Ruiping
Yu, Huang
Dirican, Mahmut
Chen, Linlin
Fang, Dongjun
Tian, Yan
Yan, Chaoyi
Xie, Jingyi
Jia, Dongmei
Liu, Hao
Wang, Jiasheng
Tang, Fangcheng
Asiri, Abdullah M
Zhang, Xiangwu
Tao, Jinsong
description The polymer substrates of flexible solar cell (FSC) electrodes play a crucial role in determining the electrode performance as well as the device performance and reliability. However, most of the FSC electrode polymer substrates suffer from high coefficients of thermal expansion (CTE) and thermal instability when exposed to thermal-cycling impact. Here, a nanocellulose/epoxy hybrid substrate employing chemically modified cellulose nanofibers, demonstrating significantly improved thermal properties as well as high optical transparency, is presented. Benefiting from nanoscale morphology and surface functional groups of the cellulose nanofibers, which enable excellent compatibility and interfacial interaction with the epoxy matrix, the hybrid substrate’s thermal properties are significantly improved with a decreased CTE of 19 ppm/K, increased glass -transition temperature (T g) of 71.8 °C, and increased half-life thermal decomposition temperature (T d,50%) of 376 °C. Concurrently, mechanical properties are greatly enhanced with increases in ultimate strength and ultimate strain by 41 and 121.5%, respectively. In particular, the hybrid substrates maintained their high transmittance of 89%@600 nm and demonstrated no transparency loss after the introduction of cellulose nanofibers. Moreover, the conductive layer of poly­(3,4-ethylene­dioxy­thio­phene):poly­styrene­sulfonate deposited on the substrate retained a stable conductivity of around 835 S/cm without noticeable electrical degradation after withstanding the environmental thermal-cycling impact. With significantly improved thermal and mechanical properties as well as retained optical transparency and stable electrode conductivity, the use of this newly developed hybrid substrate may open opportunities for the fabrication of high-performance, low-cost FSCs.
doi_str_mv 10.1021/acsaem.9b01943
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_9b01943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a653326375</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-45c9c16d91d1317ad045fd2a00b9725b5a3d6f37e35242a581c539ead1ef492c3</originalsourceid><addsrcrecordid>eNp1UMlOwzAQtRBIVKVXzj6jprWdDR9R1VKksoiWczSxJySVE1d2IpEf4XsJbQ9cOM3ozVtGj5BbzmacCT4H5QHrmcwZl1F4QUYiTqOAyURc_tmvycT7PWMDiSdCyhH5XlefpenpzkHjD-Cwaad0V6KrwQzwtoXc4JRCo-kzqhKaSh0P7zbvfEvXfe4qTRdoTGesx-AFGltUObr5mzV9jY5uu9y3Dlr0tLCOtiXSpUHVOqsHyBZ0ZfCrGlLo1hpwRy9_Q64KMB4n5zkmH6vlbrEONq-PT4uHTQAhj9ogipVUPNGSax7yFDSL4kILYCyXqYjzGEKdFGGKYSwiAfE9V3EoETTHIpJChWMyO_kqZ713WGQHV9Xg-oyz7LfY7FRsdi52ENydBAOe7W3nmuG9_8g_iW99hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells</title><source>ACS Publications</source><creator>Wang, Ruiping ; Yu, Huang ; Dirican, Mahmut ; Chen, Linlin ; Fang, Dongjun ; Tian, Yan ; Yan, Chaoyi ; Xie, Jingyi ; Jia, Dongmei ; Liu, Hao ; Wang, Jiasheng ; Tang, Fangcheng ; Asiri, Abdullah M ; Zhang, Xiangwu ; Tao, Jinsong</creator><creatorcontrib>Wang, Ruiping ; Yu, Huang ; Dirican, Mahmut ; Chen, Linlin ; Fang, Dongjun ; Tian, Yan ; Yan, Chaoyi ; Xie, Jingyi ; Jia, Dongmei ; Liu, Hao ; Wang, Jiasheng ; Tang, Fangcheng ; Asiri, Abdullah M ; Zhang, Xiangwu ; Tao, Jinsong</creatorcontrib><description>The polymer substrates of flexible solar cell (FSC) electrodes play a crucial role in determining the electrode performance as well as the device performance and reliability. However, most of the FSC electrode polymer substrates suffer from high coefficients of thermal expansion (CTE) and thermal instability when exposed to thermal-cycling impact. Here, a nanocellulose/epoxy hybrid substrate employing chemically modified cellulose nanofibers, demonstrating significantly improved thermal properties as well as high optical transparency, is presented. Benefiting from nanoscale morphology and surface functional groups of the cellulose nanofibers, which enable excellent compatibility and interfacial interaction with the epoxy matrix, the hybrid substrate’s thermal properties are significantly improved with a decreased CTE of 19 ppm/K, increased glass -transition temperature (T g) of 71.8 °C, and increased half-life thermal decomposition temperature (T d,50%) of 376 °C. Concurrently, mechanical properties are greatly enhanced with increases in ultimate strength and ultimate strain by 41 and 121.5%, respectively. In particular, the hybrid substrates maintained their high transmittance of 89%@600 nm and demonstrated no transparency loss after the introduction of cellulose nanofibers. Moreover, the conductive layer of poly­(3,4-ethylene­dioxy­thio­phene):poly­styrene­sulfonate deposited on the substrate retained a stable conductivity of around 835 S/cm without noticeable electrical degradation after withstanding the environmental thermal-cycling impact. With significantly improved thermal and mechanical properties as well as retained optical transparency and stable electrode conductivity, the use of this newly developed hybrid substrate may open opportunities for the fabrication of high-performance, low-cost FSCs.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.9b01943</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2020-01, Vol.3 (1), p.785-793</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-45c9c16d91d1317ad045fd2a00b9725b5a3d6f37e35242a581c539ead1ef492c3</citedby><cites>FETCH-LOGICAL-a314t-45c9c16d91d1317ad045fd2a00b9725b5a3d6f37e35242a581c539ead1ef492c3</cites><orcidid>0000-0002-6236-6281 ; 0000-0001-7905-3209 ; 0000-0001-5708-2690 ; 0000-0003-1701-2895 ; 0000-0003-2151-6762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.9b01943$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.9b01943$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Wang, Ruiping</creatorcontrib><creatorcontrib>Yu, Huang</creatorcontrib><creatorcontrib>Dirican, Mahmut</creatorcontrib><creatorcontrib>Chen, Linlin</creatorcontrib><creatorcontrib>Fang, Dongjun</creatorcontrib><creatorcontrib>Tian, Yan</creatorcontrib><creatorcontrib>Yan, Chaoyi</creatorcontrib><creatorcontrib>Xie, Jingyi</creatorcontrib><creatorcontrib>Jia, Dongmei</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Wang, Jiasheng</creatorcontrib><creatorcontrib>Tang, Fangcheng</creatorcontrib><creatorcontrib>Asiri, Abdullah M</creatorcontrib><creatorcontrib>Zhang, Xiangwu</creatorcontrib><creatorcontrib>Tao, Jinsong</creatorcontrib><title>Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>The polymer substrates of flexible solar cell (FSC) electrodes play a crucial role in determining the electrode performance as well as the device performance and reliability. However, most of the FSC electrode polymer substrates suffer from high coefficients of thermal expansion (CTE) and thermal instability when exposed to thermal-cycling impact. Here, a nanocellulose/epoxy hybrid substrate employing chemically modified cellulose nanofibers, demonstrating significantly improved thermal properties as well as high optical transparency, is presented. Benefiting from nanoscale morphology and surface functional groups of the cellulose nanofibers, which enable excellent compatibility and interfacial interaction with the epoxy matrix, the hybrid substrate’s thermal properties are significantly improved with a decreased CTE of 19 ppm/K, increased glass -transition temperature (T g) of 71.8 °C, and increased half-life thermal decomposition temperature (T d,50%) of 376 °C. Concurrently, mechanical properties are greatly enhanced with increases in ultimate strength and ultimate strain by 41 and 121.5%, respectively. In particular, the hybrid substrates maintained their high transmittance of 89%@600 nm and demonstrated no transparency loss after the introduction of cellulose nanofibers. Moreover, the conductive layer of poly­(3,4-ethylene­dioxy­thio­phene):poly­styrene­sulfonate deposited on the substrate retained a stable conductivity of around 835 S/cm without noticeable electrical degradation after withstanding the environmental thermal-cycling impact. With significantly improved thermal and mechanical properties as well as retained optical transparency and stable electrode conductivity, the use of this newly developed hybrid substrate may open opportunities for the fabrication of high-performance, low-cost FSCs.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMlOwzAQtRBIVKVXzj6jprWdDR9R1VKksoiWczSxJySVE1d2IpEf4XsJbQ9cOM3ozVtGj5BbzmacCT4H5QHrmcwZl1F4QUYiTqOAyURc_tmvycT7PWMDiSdCyhH5XlefpenpzkHjD-Cwaad0V6KrwQzwtoXc4JRCo-kzqhKaSh0P7zbvfEvXfe4qTRdoTGesx-AFGltUObr5mzV9jY5uu9y3Dlr0tLCOtiXSpUHVOqsHyBZ0ZfCrGlLo1hpwRy9_Q64KMB4n5zkmH6vlbrEONq-PT4uHTQAhj9ogipVUPNGSax7yFDSL4kILYCyXqYjzGEKdFGGKYSwiAfE9V3EoETTHIpJChWMyO_kqZ713WGQHV9Xg-oyz7LfY7FRsdi52ENydBAOe7W3nmuG9_8g_iW99hw</recordid><startdate>20200127</startdate><enddate>20200127</enddate><creator>Wang, Ruiping</creator><creator>Yu, Huang</creator><creator>Dirican, Mahmut</creator><creator>Chen, Linlin</creator><creator>Fang, Dongjun</creator><creator>Tian, Yan</creator><creator>Yan, Chaoyi</creator><creator>Xie, Jingyi</creator><creator>Jia, Dongmei</creator><creator>Liu, Hao</creator><creator>Wang, Jiasheng</creator><creator>Tang, Fangcheng</creator><creator>Asiri, Abdullah M</creator><creator>Zhang, Xiangwu</creator><creator>Tao, Jinsong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6236-6281</orcidid><orcidid>https://orcid.org/0000-0001-7905-3209</orcidid><orcidid>https://orcid.org/0000-0001-5708-2690</orcidid><orcidid>https://orcid.org/0000-0003-1701-2895</orcidid><orcidid>https://orcid.org/0000-0003-2151-6762</orcidid></search><sort><creationdate>20200127</creationdate><title>Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells</title><author>Wang, Ruiping ; Yu, Huang ; Dirican, Mahmut ; Chen, Linlin ; Fang, Dongjun ; Tian, Yan ; Yan, Chaoyi ; Xie, Jingyi ; Jia, Dongmei ; Liu, Hao ; Wang, Jiasheng ; Tang, Fangcheng ; Asiri, Abdullah M ; Zhang, Xiangwu ; Tao, Jinsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-45c9c16d91d1317ad045fd2a00b9725b5a3d6f37e35242a581c539ead1ef492c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ruiping</creatorcontrib><creatorcontrib>Yu, Huang</creatorcontrib><creatorcontrib>Dirican, Mahmut</creatorcontrib><creatorcontrib>Chen, Linlin</creatorcontrib><creatorcontrib>Fang, Dongjun</creatorcontrib><creatorcontrib>Tian, Yan</creatorcontrib><creatorcontrib>Yan, Chaoyi</creatorcontrib><creatorcontrib>Xie, Jingyi</creatorcontrib><creatorcontrib>Jia, Dongmei</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Wang, Jiasheng</creatorcontrib><creatorcontrib>Tang, Fangcheng</creatorcontrib><creatorcontrib>Asiri, Abdullah M</creatorcontrib><creatorcontrib>Zhang, Xiangwu</creatorcontrib><creatorcontrib>Tao, Jinsong</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ruiping</au><au>Yu, Huang</au><au>Dirican, Mahmut</au><au>Chen, Linlin</au><au>Fang, Dongjun</au><au>Tian, Yan</au><au>Yan, Chaoyi</au><au>Xie, Jingyi</au><au>Jia, Dongmei</au><au>Liu, Hao</au><au>Wang, Jiasheng</au><au>Tang, Fangcheng</au><au>Asiri, Abdullah M</au><au>Zhang, Xiangwu</au><au>Tao, Jinsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2020-01-27</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>785</spage><epage>793</epage><pages>785-793</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>The polymer substrates of flexible solar cell (FSC) electrodes play a crucial role in determining the electrode performance as well as the device performance and reliability. However, most of the FSC electrode polymer substrates suffer from high coefficients of thermal expansion (CTE) and thermal instability when exposed to thermal-cycling impact. Here, a nanocellulose/epoxy hybrid substrate employing chemically modified cellulose nanofibers, demonstrating significantly improved thermal properties as well as high optical transparency, is presented. Benefiting from nanoscale morphology and surface functional groups of the cellulose nanofibers, which enable excellent compatibility and interfacial interaction with the epoxy matrix, the hybrid substrate’s thermal properties are significantly improved with a decreased CTE of 19 ppm/K, increased glass -transition temperature (T g) of 71.8 °C, and increased half-life thermal decomposition temperature (T d,50%) of 376 °C. Concurrently, mechanical properties are greatly enhanced with increases in ultimate strength and ultimate strain by 41 and 121.5%, respectively. In particular, the hybrid substrates maintained their high transmittance of 89%@600 nm and demonstrated no transparency loss after the introduction of cellulose nanofibers. Moreover, the conductive layer of poly­(3,4-ethylene­dioxy­thio­phene):poly­styrene­sulfonate deposited on the substrate retained a stable conductivity of around 835 S/cm without noticeable electrical degradation after withstanding the environmental thermal-cycling impact. With significantly improved thermal and mechanical properties as well as retained optical transparency and stable electrode conductivity, the use of this newly developed hybrid substrate may open opportunities for the fabrication of high-performance, low-cost FSCs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.9b01943</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6236-6281</orcidid><orcidid>https://orcid.org/0000-0001-7905-3209</orcidid><orcidid>https://orcid.org/0000-0001-5708-2690</orcidid><orcidid>https://orcid.org/0000-0003-1701-2895</orcidid><orcidid>https://orcid.org/0000-0003-2151-6762</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2020-01, Vol.3 (1), p.785-793
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_9b01943
source ACS Publications
title Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Transparent,%20Thermally%20Stable,%20and%20Mechanically%20Robust%20Hybrid%20Cellulose-Nanofiber/Polymer%20Substrates%20for%20the%20Electrodes%20of%20Flexible%20Solar%20Cells&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Wang,%20Ruiping&rft.date=2020-01-27&rft.volume=3&rft.issue=1&rft.spage=785&rft.epage=793&rft.pages=785-793&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.9b01943&rft_dat=%3Cacs_cross%3Ea653326375%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true