Psesudocubic Phase Tungsten Oxide as a Photocatalyst for Hydrogen Evolution Reaction

Defect and phase engineering can effectively tune the activity of photocatalysts by altering their band structure and active site configuration. Herein, we report the phase-controlled synthesis of tungsten oxide (WO3) nanoplates via a wet-chemical approach. By adjusting the ratio of trioctylphosphin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2019-12, Vol.2 (12), p.8792-8800
Hauptverfasser: Zhang, Xiandi, Hao, Wei, Tsang, Chui-Shan, Liu, Mengjie, Hwang, Gyeong S, Lee, Lawrence Yoon Suk
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8800
container_issue 12
container_start_page 8792
container_title ACS applied energy materials
container_volume 2
creator Zhang, Xiandi
Hao, Wei
Tsang, Chui-Shan
Liu, Mengjie
Hwang, Gyeong S
Lee, Lawrence Yoon Suk
description Defect and phase engineering can effectively tune the activity of photocatalysts by altering their band structure and active site configuration. Herein, we report the phase-controlled synthesis of tungsten oxide (WO3) nanoplates via a wet-chemical approach. By adjusting the ratio of trioctylphosphine and trioctylphosphine oxide, oxygen vacancies are induced in WO3 at a relatively low temperature, accompanying the crystal structure transition from monoclinic to orthorhombic or pseudocubic phase. The experimental results and DFT calculations reveal that the increased oxygen vacant sites in WO3 lead to the upshift in both conduction band minimum and valence band maximum. The reformed band structure of reduced WO3 samples (WO3–x ) enables the photocatalytic hydrogen evolution without cocatalyst at a maximum steady rate of 340 μmol g–1 h–1 under simulated sunlight. Our work demonstrates a simple and effective strategy of introducing oxygen vacancy to WO3 for band structure tuning, which may be further extended to other metal oxide systems.
doi_str_mv 10.1021/acsaem.9b01790
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_9b01790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c98545809</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-195c44eb2f3d337cd34b767e4c6a74fc7605973f46c1cdd60bc4244201f4806a3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWGqvnnMWtk6y2cQcpVQrFFpkPS-z-ahb2o0ku2L_e7dsD148zWPmveHxI-SewZwBZ49oErrjXNfAlIYrMuGFEhloya__6FsyS2kPAEwzybWekHKbXOptMH3dGLr9xORo2be71LmWbn4a6ygmisMldMFgh4dT6qgPka5ONobd4Fp-h0PfNaGl7w7NWdyRG4-H5GaXOSUfL8tyscrWm9e3xfM6Q65ElzFdGCFczX1u81wZm4taSeWEkaiEN0pCoVXuhTTMWCuhNoILwYF58QQS8ymZj39NDClF56uv2BwxnioG1RlLNWKpLliGwMMYGPbVPvSxHer9Z_4FIeNlRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Psesudocubic Phase Tungsten Oxide as a Photocatalyst for Hydrogen Evolution Reaction</title><source>American Chemical Society Journals</source><creator>Zhang, Xiandi ; Hao, Wei ; Tsang, Chui-Shan ; Liu, Mengjie ; Hwang, Gyeong S ; Lee, Lawrence Yoon Suk</creator><creatorcontrib>Zhang, Xiandi ; Hao, Wei ; Tsang, Chui-Shan ; Liu, Mengjie ; Hwang, Gyeong S ; Lee, Lawrence Yoon Suk</creatorcontrib><description>Defect and phase engineering can effectively tune the activity of photocatalysts by altering their band structure and active site configuration. Herein, we report the phase-controlled synthesis of tungsten oxide (WO3) nanoplates via a wet-chemical approach. By adjusting the ratio of trioctylphosphine and trioctylphosphine oxide, oxygen vacancies are induced in WO3 at a relatively low temperature, accompanying the crystal structure transition from monoclinic to orthorhombic or pseudocubic phase. The experimental results and DFT calculations reveal that the increased oxygen vacant sites in WO3 lead to the upshift in both conduction band minimum and valence band maximum. The reformed band structure of reduced WO3 samples (WO3–x ) enables the photocatalytic hydrogen evolution without cocatalyst at a maximum steady rate of 340 μmol g–1 h–1 under simulated sunlight. Our work demonstrates a simple and effective strategy of introducing oxygen vacancy to WO3 for band structure tuning, which may be further extended to other metal oxide systems.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.9b01790</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2019-12, Vol.2 (12), p.8792-8800</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-195c44eb2f3d337cd34b767e4c6a74fc7605973f46c1cdd60bc4244201f4806a3</citedby><cites>FETCH-LOGICAL-a274t-195c44eb2f3d337cd34b767e4c6a74fc7605973f46c1cdd60bc4244201f4806a3</cites><orcidid>0000-0002-5538-9426 ; 0000-0002-6119-4780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.9b01790$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.9b01790$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhang, Xiandi</creatorcontrib><creatorcontrib>Hao, Wei</creatorcontrib><creatorcontrib>Tsang, Chui-Shan</creatorcontrib><creatorcontrib>Liu, Mengjie</creatorcontrib><creatorcontrib>Hwang, Gyeong S</creatorcontrib><creatorcontrib>Lee, Lawrence Yoon Suk</creatorcontrib><title>Psesudocubic Phase Tungsten Oxide as a Photocatalyst for Hydrogen Evolution Reaction</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Defect and phase engineering can effectively tune the activity of photocatalysts by altering their band structure and active site configuration. Herein, we report the phase-controlled synthesis of tungsten oxide (WO3) nanoplates via a wet-chemical approach. By adjusting the ratio of trioctylphosphine and trioctylphosphine oxide, oxygen vacancies are induced in WO3 at a relatively low temperature, accompanying the crystal structure transition from monoclinic to orthorhombic or pseudocubic phase. The experimental results and DFT calculations reveal that the increased oxygen vacant sites in WO3 lead to the upshift in both conduction band minimum and valence band maximum. The reformed band structure of reduced WO3 samples (WO3–x ) enables the photocatalytic hydrogen evolution without cocatalyst at a maximum steady rate of 340 μmol g–1 h–1 under simulated sunlight. Our work demonstrates a simple and effective strategy of introducing oxygen vacancy to WO3 for band structure tuning, which may be further extended to other metal oxide systems.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWGqvnnMWtk6y2cQcpVQrFFpkPS-z-ahb2o0ku2L_e7dsD148zWPmveHxI-SewZwBZ49oErrjXNfAlIYrMuGFEhloya__6FsyS2kPAEwzybWekHKbXOptMH3dGLr9xORo2be71LmWbn4a6ygmisMldMFgh4dT6qgPka5ONobd4Fp-h0PfNaGl7w7NWdyRG4-H5GaXOSUfL8tyscrWm9e3xfM6Q65ElzFdGCFczX1u81wZm4taSeWEkaiEN0pCoVXuhTTMWCuhNoILwYF58QQS8ymZj39NDClF56uv2BwxnioG1RlLNWKpLliGwMMYGPbVPvSxHer9Z_4FIeNlRQ</recordid><startdate>20191223</startdate><enddate>20191223</enddate><creator>Zhang, Xiandi</creator><creator>Hao, Wei</creator><creator>Tsang, Chui-Shan</creator><creator>Liu, Mengjie</creator><creator>Hwang, Gyeong S</creator><creator>Lee, Lawrence Yoon Suk</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5538-9426</orcidid><orcidid>https://orcid.org/0000-0002-6119-4780</orcidid></search><sort><creationdate>20191223</creationdate><title>Psesudocubic Phase Tungsten Oxide as a Photocatalyst for Hydrogen Evolution Reaction</title><author>Zhang, Xiandi ; Hao, Wei ; Tsang, Chui-Shan ; Liu, Mengjie ; Hwang, Gyeong S ; Lee, Lawrence Yoon Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-195c44eb2f3d337cd34b767e4c6a74fc7605973f46c1cdd60bc4244201f4806a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiandi</creatorcontrib><creatorcontrib>Hao, Wei</creatorcontrib><creatorcontrib>Tsang, Chui-Shan</creatorcontrib><creatorcontrib>Liu, Mengjie</creatorcontrib><creatorcontrib>Hwang, Gyeong S</creatorcontrib><creatorcontrib>Lee, Lawrence Yoon Suk</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiandi</au><au>Hao, Wei</au><au>Tsang, Chui-Shan</au><au>Liu, Mengjie</au><au>Hwang, Gyeong S</au><au>Lee, Lawrence Yoon Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Psesudocubic Phase Tungsten Oxide as a Photocatalyst for Hydrogen Evolution Reaction</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2019-12-23</date><risdate>2019</risdate><volume>2</volume><issue>12</issue><spage>8792</spage><epage>8800</epage><pages>8792-8800</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Defect and phase engineering can effectively tune the activity of photocatalysts by altering their band structure and active site configuration. Herein, we report the phase-controlled synthesis of tungsten oxide (WO3) nanoplates via a wet-chemical approach. By adjusting the ratio of trioctylphosphine and trioctylphosphine oxide, oxygen vacancies are induced in WO3 at a relatively low temperature, accompanying the crystal structure transition from monoclinic to orthorhombic or pseudocubic phase. The experimental results and DFT calculations reveal that the increased oxygen vacant sites in WO3 lead to the upshift in both conduction band minimum and valence band maximum. The reformed band structure of reduced WO3 samples (WO3–x ) enables the photocatalytic hydrogen evolution without cocatalyst at a maximum steady rate of 340 μmol g–1 h–1 under simulated sunlight. Our work demonstrates a simple and effective strategy of introducing oxygen vacancy to WO3 for band structure tuning, which may be further extended to other metal oxide systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.9b01790</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5538-9426</orcidid><orcidid>https://orcid.org/0000-0002-6119-4780</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2019-12, Vol.2 (12), p.8792-8800
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_9b01790
source American Chemical Society Journals
title Psesudocubic Phase Tungsten Oxide as a Photocatalyst for Hydrogen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Psesudocubic%20Phase%20Tungsten%20Oxide%20as%20a%20Photocatalyst%20for%20Hydrogen%20Evolution%20Reaction&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Zhang,%20Xiandi&rft.date=2019-12-23&rft.volume=2&rft.issue=12&rft.spage=8792&rft.epage=8800&rft.pages=8792-8800&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.9b01790&rft_dat=%3Cacs_cross%3Ec98545809%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true