Boosting Lithium–Sulfur Battery Performance by Integrating a Redox-Active Covalent Organic Framework in the Separator

Lithium–sulfur batteries are getting more attention in energy storage and conversion fields due to their high theoretical capacity and specific energy density. Nevertheless, the dissolution of polysulfides results in their poor cycle stability, which is the major issue in practical use. To overcome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2019-08, Vol.2 (8), p.5793-5798
Hauptverfasser: Xu, Qing, Zhang, Kailong, Qian, Jing, Guo, Yu, Song, Xiaokai, Pan, Honglin, Wang, Di, Li, Xiaopeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5798
container_issue 8
container_start_page 5793
container_title ACS applied energy materials
container_volume 2
creator Xu, Qing
Zhang, Kailong
Qian, Jing
Guo, Yu
Song, Xiaokai
Pan, Honglin
Wang, Di
Li, Xiaopeng
description Lithium–sulfur batteries are getting more attention in energy storage and conversion fields due to their high theoretical capacity and specific energy density. Nevertheless, the dissolution of polysulfides results in their poor cycle stability, which is the major issue in practical use. To overcome the challenge, we report a new strategy by employing a redox-active covalent organic framework as the separator in lithium–sulfur batteries. The one-dimensional pore channels of the covalent organic framework provide a fast transport pathway for the lithium ion. And the pyridine units of the framework not only enhance the chemical adsorption of sulfur but also catalyze the charge and discharge processes. By virtue of these features, the specific capacity at 0.2 C is 977 mAh g–1 after 100 cycles, which is 5.2 times higher than that of the pristine separator-based battery. Additionally, the specific capacity achieves 826 mAh g–1 at 1 C after 250 cycles.
doi_str_mv 10.1021/acsaem.9b00920
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_9b00920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b872404243</sourcerecordid><originalsourceid>FETCH-LOGICAL-a340t-5cb01ee47c4b2cabbee01dd5023a9b20712e39e4885ddf9b6cca845866139f083</originalsourceid><addsrcrecordid>eNp1kE1PwkAQhjdGEwly9bxnk-Ls9oPuEYgoCQlG9NzMbqdQpF2yXUBu_gf_ob_EKh68eJrJZJ43bx7GrgX0BUhxi6ZBqvpKAygJZ6wj40EUgErk-Z_9kvWaZg0AQolEKtVhh5G1jS_rJZ-VflXuqs_3j8VuU-wcH6H35I78kVxhXYW1Ia6PfFp7Wjr8YZA_UW7fgqHx5Z742O5xQ7Xnc7fEujR84rCig3WvvKy5XxFf0BZb1rordlHgpqHe7-yyl8nd8_ghmM3vp-PhLMAwAh_ERoMgigYm0tKg1kQg8jwGGaLSEgZCUqgoStM4zwulE2MwjeI0SUSoCkjDLuufco2zTeOoyLaurNAdMwHZt7nsZC77NdcCNyegvWdru3N1W--_5y-pkHO5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boosting Lithium–Sulfur Battery Performance by Integrating a Redox-Active Covalent Organic Framework in the Separator</title><source>ACS Publications</source><creator>Xu, Qing ; Zhang, Kailong ; Qian, Jing ; Guo, Yu ; Song, Xiaokai ; Pan, Honglin ; Wang, Di ; Li, Xiaopeng</creator><creatorcontrib>Xu, Qing ; Zhang, Kailong ; Qian, Jing ; Guo, Yu ; Song, Xiaokai ; Pan, Honglin ; Wang, Di ; Li, Xiaopeng</creatorcontrib><description>Lithium–sulfur batteries are getting more attention in energy storage and conversion fields due to their high theoretical capacity and specific energy density. Nevertheless, the dissolution of polysulfides results in their poor cycle stability, which is the major issue in practical use. To overcome the challenge, we report a new strategy by employing a redox-active covalent organic framework as the separator in lithium–sulfur batteries. The one-dimensional pore channels of the covalent organic framework provide a fast transport pathway for the lithium ion. And the pyridine units of the framework not only enhance the chemical adsorption of sulfur but also catalyze the charge and discharge processes. By virtue of these features, the specific capacity at 0.2 C is 977 mAh g–1 after 100 cycles, which is 5.2 times higher than that of the pristine separator-based battery. Additionally, the specific capacity achieves 826 mAh g–1 at 1 C after 250 cycles.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.9b00920</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2019-08, Vol.2 (8), p.5793-5798</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a340t-5cb01ee47c4b2cabbee01dd5023a9b20712e39e4885ddf9b6cca845866139f083</citedby><cites>FETCH-LOGICAL-a340t-5cb01ee47c4b2cabbee01dd5023a9b20712e39e4885ddf9b6cca845866139f083</cites><orcidid>0000-0003-3230-1249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.9b00920$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.9b00920$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Xu, Qing</creatorcontrib><creatorcontrib>Zhang, Kailong</creatorcontrib><creatorcontrib>Qian, Jing</creatorcontrib><creatorcontrib>Guo, Yu</creatorcontrib><creatorcontrib>Song, Xiaokai</creatorcontrib><creatorcontrib>Pan, Honglin</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><title>Boosting Lithium–Sulfur Battery Performance by Integrating a Redox-Active Covalent Organic Framework in the Separator</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Lithium–sulfur batteries are getting more attention in energy storage and conversion fields due to their high theoretical capacity and specific energy density. Nevertheless, the dissolution of polysulfides results in their poor cycle stability, which is the major issue in practical use. To overcome the challenge, we report a new strategy by employing a redox-active covalent organic framework as the separator in lithium–sulfur batteries. The one-dimensional pore channels of the covalent organic framework provide a fast transport pathway for the lithium ion. And the pyridine units of the framework not only enhance the chemical adsorption of sulfur but also catalyze the charge and discharge processes. By virtue of these features, the specific capacity at 0.2 C is 977 mAh g–1 after 100 cycles, which is 5.2 times higher than that of the pristine separator-based battery. Additionally, the specific capacity achieves 826 mAh g–1 at 1 C after 250 cycles.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwkAQhjdGEwly9bxnk-Ls9oPuEYgoCQlG9NzMbqdQpF2yXUBu_gf_ob_EKh68eJrJZJ43bx7GrgX0BUhxi6ZBqvpKAygJZ6wj40EUgErk-Z_9kvWaZg0AQolEKtVhh5G1jS_rJZ-VflXuqs_3j8VuU-wcH6H35I78kVxhXYW1Ia6PfFp7Wjr8YZA_UW7fgqHx5Z742O5xQ7Xnc7fEujR84rCig3WvvKy5XxFf0BZb1rordlHgpqHe7-yyl8nd8_ghmM3vp-PhLMAwAh_ERoMgigYm0tKg1kQg8jwGGaLSEgZCUqgoStM4zwulE2MwjeI0SUSoCkjDLuufco2zTeOoyLaurNAdMwHZt7nsZC77NdcCNyegvWdru3N1W--_5y-pkHO5</recordid><startdate>20190826</startdate><enddate>20190826</enddate><creator>Xu, Qing</creator><creator>Zhang, Kailong</creator><creator>Qian, Jing</creator><creator>Guo, Yu</creator><creator>Song, Xiaokai</creator><creator>Pan, Honglin</creator><creator>Wang, Di</creator><creator>Li, Xiaopeng</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3230-1249</orcidid></search><sort><creationdate>20190826</creationdate><title>Boosting Lithium–Sulfur Battery Performance by Integrating a Redox-Active Covalent Organic Framework in the Separator</title><author>Xu, Qing ; Zhang, Kailong ; Qian, Jing ; Guo, Yu ; Song, Xiaokai ; Pan, Honglin ; Wang, Di ; Li, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a340t-5cb01ee47c4b2cabbee01dd5023a9b20712e39e4885ddf9b6cca845866139f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Qing</creatorcontrib><creatorcontrib>Zhang, Kailong</creatorcontrib><creatorcontrib>Qian, Jing</creatorcontrib><creatorcontrib>Guo, Yu</creatorcontrib><creatorcontrib>Song, Xiaokai</creatorcontrib><creatorcontrib>Pan, Honglin</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Qing</au><au>Zhang, Kailong</au><au>Qian, Jing</au><au>Guo, Yu</au><au>Song, Xiaokai</au><au>Pan, Honglin</au><au>Wang, Di</au><au>Li, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Lithium–Sulfur Battery Performance by Integrating a Redox-Active Covalent Organic Framework in the Separator</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2019-08-26</date><risdate>2019</risdate><volume>2</volume><issue>8</issue><spage>5793</spage><epage>5798</epage><pages>5793-5798</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Lithium–sulfur batteries are getting more attention in energy storage and conversion fields due to their high theoretical capacity and specific energy density. Nevertheless, the dissolution of polysulfides results in their poor cycle stability, which is the major issue in practical use. To overcome the challenge, we report a new strategy by employing a redox-active covalent organic framework as the separator in lithium–sulfur batteries. The one-dimensional pore channels of the covalent organic framework provide a fast transport pathway for the lithium ion. And the pyridine units of the framework not only enhance the chemical adsorption of sulfur but also catalyze the charge and discharge processes. By virtue of these features, the specific capacity at 0.2 C is 977 mAh g–1 after 100 cycles, which is 5.2 times higher than that of the pristine separator-based battery. Additionally, the specific capacity achieves 826 mAh g–1 at 1 C after 250 cycles.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.9b00920</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3230-1249</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2019-08, Vol.2 (8), p.5793-5798
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_9b00920
source ACS Publications
title Boosting Lithium–Sulfur Battery Performance by Integrating a Redox-Active Covalent Organic Framework in the Separator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Lithium%E2%80%93Sulfur%20Battery%20Performance%20by%20Integrating%20a%20Redox-Active%20Covalent%20Organic%20Framework%20in%20the%20Separator&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Xu,%20Qing&rft.date=2019-08-26&rft.volume=2&rft.issue=8&rft.spage=5793&rft.epage=5798&rft.pages=5793-5798&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.9b00920&rft_dat=%3Cacs_cross%3Eb872404243%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true