Low-Temperature Performance of a Ferroelectric Glass Electrolyte Rechargeable Cell

An electrochemical cell that powers all-electric road vehicles will likely have an alkali-metal anode and the ability to operate down to −20 °C. The traditional all-solid-state batteries can only perform well at temperatures above room temperature. We have shown elsewhere that an alkali-metal negati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2019-07, Vol.2 (7), p.4943-4953
Hauptverfasser: Braga, M. H, Murchison, A. J, Oliveira, J. E, Goodenough, J. B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4953
container_issue 7
container_start_page 4943
container_title ACS applied energy materials
container_volume 2
creator Braga, M. H
Murchison, A. J
Oliveira, J. E
Goodenough, J. B
description An electrochemical cell that powers all-electric road vehicles will likely have an alkali-metal anode and the ability to operate down to −20 °C. The traditional all-solid-state batteries can only perform well at temperatures above room temperature. We have shown elsewhere that an alkali-metal negative electrode can be plated dendrite-free from a ferroelectric amorphous-oxide (glass) Li+ or Na+ electrolyte having a room-temperature Li+ or Na+ conductivity σ i ≈ 2.5 × 10–2 S cm–1 which is similar to that of a liquid electrolyte. Here, it is demonstrated that the ionic conductivity of the electrolyte is σ i ≈ 10–2 S cm–1 at −20 °C after optimization, and the dielectric constant is ε′r ≈ 6 × 105 at −35 °C. Moreover, it is shown that the remanent polarization of the ferroelectric-electrolyte (polarization at zero potential) adds to the capacity of the cell. The electrochemical cycling performances between −35 and 25 °C of the Li+-glass electrolyte in gold and lithium symmetric cells and in full cells are presented. Furthermore, it is shown that a coin-cell with the ferroelectric Li-glass electrolyte at −35 °C with output current of 56 μA cm–2 can light a red LED at 1.5 V. Finally, it is concluded that the Li+-glass electrolyte performs very well in symmetric cells and performs reasonably well down to −20 °C in asymmetric cells that also rely on the performance of the cathode and on the electrolyte/cathode interface.
doi_str_mv 10.1021/acsaem.9b00616
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_9b00616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a729462745</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-5d68463383d7d6b78938b43ac0ac3cd4cc5196b5915089f5aaac6210cc113b433</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsNRePe9ZSN3NJpvsUUpbhYJS6jlMJhNt2XTLbIr0vzfaHrx4mg_eezx-QtxrNdUq1Y-AEaibulopq-2VGKV5kSXK2fT6z34rJjHulFLaaZs6NxLrVfhKNtQdiKE_Msk34jZwB3skGVoJckHMgTxhz1uUSw8xyvnvGfypJ7km_AT-IKg9yRl5fyduWvCRJpc5Fu-L-Wb2nKxely-zp1UCaZH1Sd7YMrPGlKYpGlsXpTNlnRlABWiwyRBz7WydO52r0rU5AKBNtULU2gxCMxbTcy5yiJGprQ687YBPlVbVD5TqDKW6QBkMD2fD8K924cj7od5_4m_y52Q6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-Temperature Performance of a Ferroelectric Glass Electrolyte Rechargeable Cell</title><source>ACS Publications</source><creator>Braga, M. H ; Murchison, A. J ; Oliveira, J. E ; Goodenough, J. B</creator><creatorcontrib>Braga, M. H ; Murchison, A. J ; Oliveira, J. E ; Goodenough, J. B</creatorcontrib><description>An electrochemical cell that powers all-electric road vehicles will likely have an alkali-metal anode and the ability to operate down to −20 °C. The traditional all-solid-state batteries can only perform well at temperatures above room temperature. We have shown elsewhere that an alkali-metal negative electrode can be plated dendrite-free from a ferroelectric amorphous-oxide (glass) Li+ or Na+ electrolyte having a room-temperature Li+ or Na+ conductivity σ i ≈ 2.5 × 10–2 S cm–1 which is similar to that of a liquid electrolyte. Here, it is demonstrated that the ionic conductivity of the electrolyte is σ i ≈ 10–2 S cm–1 at −20 °C after optimization, and the dielectric constant is ε′r ≈ 6 × 105 at −35 °C. Moreover, it is shown that the remanent polarization of the ferroelectric-electrolyte (polarization at zero potential) adds to the capacity of the cell. The electrochemical cycling performances between −35 and 25 °C of the Li+-glass electrolyte in gold and lithium symmetric cells and in full cells are presented. Furthermore, it is shown that a coin-cell with the ferroelectric Li-glass electrolyte at −35 °C with output current of 56 μA cm–2 can light a red LED at 1.5 V. Finally, it is concluded that the Li+-glass electrolyte performs very well in symmetric cells and performs reasonably well down to −20 °C in asymmetric cells that also rely on the performance of the cathode and on the electrolyte/cathode interface.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.9b00616</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2019-07, Vol.2 (7), p.4943-4953</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-5d68463383d7d6b78938b43ac0ac3cd4cc5196b5915089f5aaac6210cc113b433</citedby><cites>FETCH-LOGICAL-a274t-5d68463383d7d6b78938b43ac0ac3cd4cc5196b5915089f5aaac6210cc113b433</cites><orcidid>0000-0001-9350-3034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.9b00616$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.9b00616$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Braga, M. H</creatorcontrib><creatorcontrib>Murchison, A. J</creatorcontrib><creatorcontrib>Oliveira, J. E</creatorcontrib><creatorcontrib>Goodenough, J. B</creatorcontrib><title>Low-Temperature Performance of a Ferroelectric Glass Electrolyte Rechargeable Cell</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>An electrochemical cell that powers all-electric road vehicles will likely have an alkali-metal anode and the ability to operate down to −20 °C. The traditional all-solid-state batteries can only perform well at temperatures above room temperature. We have shown elsewhere that an alkali-metal negative electrode can be plated dendrite-free from a ferroelectric amorphous-oxide (glass) Li+ or Na+ electrolyte having a room-temperature Li+ or Na+ conductivity σ i ≈ 2.5 × 10–2 S cm–1 which is similar to that of a liquid electrolyte. Here, it is demonstrated that the ionic conductivity of the electrolyte is σ i ≈ 10–2 S cm–1 at −20 °C after optimization, and the dielectric constant is ε′r ≈ 6 × 105 at −35 °C. Moreover, it is shown that the remanent polarization of the ferroelectric-electrolyte (polarization at zero potential) adds to the capacity of the cell. The electrochemical cycling performances between −35 and 25 °C of the Li+-glass electrolyte in gold and lithium symmetric cells and in full cells are presented. Furthermore, it is shown that a coin-cell with the ferroelectric Li-glass electrolyte at −35 °C with output current of 56 μA cm–2 can light a red LED at 1.5 V. Finally, it is concluded that the Li+-glass electrolyte performs very well in symmetric cells and performs reasonably well down to −20 °C in asymmetric cells that also rely on the performance of the cathode and on the electrolyte/cathode interface.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsNRePe9ZSN3NJpvsUUpbhYJS6jlMJhNt2XTLbIr0vzfaHrx4mg_eezx-QtxrNdUq1Y-AEaibulopq-2VGKV5kSXK2fT6z34rJjHulFLaaZs6NxLrVfhKNtQdiKE_Msk34jZwB3skGVoJckHMgTxhz1uUSw8xyvnvGfypJ7km_AT-IKg9yRl5fyduWvCRJpc5Fu-L-Wb2nKxely-zp1UCaZH1Sd7YMrPGlKYpGlsXpTNlnRlABWiwyRBz7WydO52r0rU5AKBNtULU2gxCMxbTcy5yiJGprQ687YBPlVbVD5TqDKW6QBkMD2fD8K924cj7od5_4m_y52Q6</recordid><startdate>20190722</startdate><enddate>20190722</enddate><creator>Braga, M. H</creator><creator>Murchison, A. J</creator><creator>Oliveira, J. E</creator><creator>Goodenough, J. B</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9350-3034</orcidid></search><sort><creationdate>20190722</creationdate><title>Low-Temperature Performance of a Ferroelectric Glass Electrolyte Rechargeable Cell</title><author>Braga, M. H ; Murchison, A. J ; Oliveira, J. E ; Goodenough, J. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-5d68463383d7d6b78938b43ac0ac3cd4cc5196b5915089f5aaac6210cc113b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braga, M. H</creatorcontrib><creatorcontrib>Murchison, A. J</creatorcontrib><creatorcontrib>Oliveira, J. E</creatorcontrib><creatorcontrib>Goodenough, J. B</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braga, M. H</au><au>Murchison, A. J</au><au>Oliveira, J. E</au><au>Goodenough, J. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Temperature Performance of a Ferroelectric Glass Electrolyte Rechargeable Cell</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2019-07-22</date><risdate>2019</risdate><volume>2</volume><issue>7</issue><spage>4943</spage><epage>4953</epage><pages>4943-4953</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>An electrochemical cell that powers all-electric road vehicles will likely have an alkali-metal anode and the ability to operate down to −20 °C. The traditional all-solid-state batteries can only perform well at temperatures above room temperature. We have shown elsewhere that an alkali-metal negative electrode can be plated dendrite-free from a ferroelectric amorphous-oxide (glass) Li+ or Na+ electrolyte having a room-temperature Li+ or Na+ conductivity σ i ≈ 2.5 × 10–2 S cm–1 which is similar to that of a liquid electrolyte. Here, it is demonstrated that the ionic conductivity of the electrolyte is σ i ≈ 10–2 S cm–1 at −20 °C after optimization, and the dielectric constant is ε′r ≈ 6 × 105 at −35 °C. Moreover, it is shown that the remanent polarization of the ferroelectric-electrolyte (polarization at zero potential) adds to the capacity of the cell. The electrochemical cycling performances between −35 and 25 °C of the Li+-glass electrolyte in gold and lithium symmetric cells and in full cells are presented. Furthermore, it is shown that a coin-cell with the ferroelectric Li-glass electrolyte at −35 °C with output current of 56 μA cm–2 can light a red LED at 1.5 V. Finally, it is concluded that the Li+-glass electrolyte performs very well in symmetric cells and performs reasonably well down to −20 °C in asymmetric cells that also rely on the performance of the cathode and on the electrolyte/cathode interface.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.9b00616</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9350-3034</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2019-07, Vol.2 (7), p.4943-4953
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_9b00616
source ACS Publications
title Low-Temperature Performance of a Ferroelectric Glass Electrolyte Rechargeable Cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Temperature%20Performance%20of%20a%20Ferroelectric%20Glass%20Electrolyte%20Rechargeable%20Cell&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Braga,%20M.%20H&rft.date=2019-07-22&rft.volume=2&rft.issue=7&rft.spage=4943&rft.epage=4953&rft.pages=4943-4953&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.9b00616&rft_dat=%3Cacs_cross%3Ea729462745%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true