Low-Temperature Screen-Printed Metallization for the Scale-Up of Two-Terminal Perovskite–Silicon Tandems
Tandem photovoltaic devices based on perovskite and crystalline silicon (PK/c-Si) absorbers have the potential to push commercial silicon single junction devices beyond their current efficiency limit. However, their scale-up to industrially relevant sizes is largely limited by current fabrication me...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2019-05, Vol.2 (5), p.3815-3821 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tandem photovoltaic devices based on perovskite and crystalline silicon (PK/c-Si) absorbers have the potential to push commercial silicon single junction devices beyond their current efficiency limit. However, their scale-up to industrially relevant sizes is largely limited by current fabrication methods which rely on evaporated metallization of the front contact instead of industry standard screen-printed silver grids. To tackle this challenge, we demonstrate how a low-temperature silver paste applied by a screen-printing process can be used for the front metal grid of two-terminal perovskite–silicon tandem structures. Small-area tandem devices with such printed front metallization show minimal thermal degradation when annealed up to 140 °C in air, resulting in silver bulk resistivity of |
---|---|
ISSN: | 2574-0962 2574-0962 |
DOI: | 10.1021/acsaem.9b00502 |