Directly Deposited Binder-Free Sulfur Electrode Enabled by Air-Controlled Electrospray Process
Lithium–sulfur batteries are one of the most promising energy storage technologies to replace commercial Li-ion batteries due to 5-fold higher theoretical energy density, and lower cost. However, due to certain limitations, the technology is not ready to be deployed. To overcome some of these, scien...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2019-01, Vol.2 (1), p.678-686 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 686 |
---|---|
container_issue | 1 |
container_start_page | 678 |
container_title | ACS applied energy materials |
container_volume | 2 |
creator | Halim, Willy Lee, Jin-Hong Park, Sang-Mok Zhang, Rui Sarkar, Snatika O’Neil, Travis Chiang, Yi-Chen Joo, Yong Lak |
description | Lithium–sulfur batteries are one of the most promising energy storage technologies to replace commercial Li-ion batteries due to 5-fold higher theoretical energy density, and lower cost. However, due to certain limitations, the technology is not ready to be deployed. To overcome some of these, scientists have been extensively employing graphene oxide (GO) or graphene material to improve the electrochemical performance. In this work, we present a unique, novel, and facile method to deposit the active materials onto an aluminum current collector by utilizing the van der Waals interaction between graphene oxide and aluminum via an air-controlled electrospray (ACES) process. The role of conventional polymer binder was replaced by graphene, resulting in a binder-free substrate. We demonstrated that the elimination of conventional polymer binder and graphene layers assembled via the ACES method resulted in higher capacity and retention, and offer almost 4 times higher capacity at 2C than the conventional slurry-cast system with polymer binder. This ACES technique offers potential for improving the overall energy density of sulfur and being adapted for commercialization in the energy storage industry. |
doi_str_mv | 10.1021/acsaem.8b01694 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_8b01694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c932668576</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-36461d41a964ffda1f639cf6997abe4817c1e0b7d3844eda2e62cbc75662413e3</originalsourceid><addsrcrecordid>eNp1kL1rwzAUxEVpoSHN2llzwa6erMjWmOarhUALbdcaWXoCB8cOUjz4v6-CPXTp9I7jd4_jCHkElgLj8KxN0HhKi4qBVOKGzPgyFwlTkt_-0fdkEcKRMQYKJFdqRn42tUdzaQa6wXMX6gta-lK3Fn2y84j0s29c7-m2iZDvLNJtq6smQtVAV7VP1l0b_ebqTEw4ez3QD98ZDOGB3DndBFxMd06-d9uv9WtyeN-_rVeHRGcgLkkmhQQrQCspnLManMyUcVKpXFcoCsgNIKtymxVCoNUcJTeVyZdScgEZZnOSjn9NLBA8uvLs65P2QwmsvA5UjgOV00Ax8DQGol8eu963sd5_8C-eCmkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Directly Deposited Binder-Free Sulfur Electrode Enabled by Air-Controlled Electrospray Process</title><source>American Chemical Society</source><creator>Halim, Willy ; Lee, Jin-Hong ; Park, Sang-Mok ; Zhang, Rui ; Sarkar, Snatika ; O’Neil, Travis ; Chiang, Yi-Chen ; Joo, Yong Lak</creator><creatorcontrib>Halim, Willy ; Lee, Jin-Hong ; Park, Sang-Mok ; Zhang, Rui ; Sarkar, Snatika ; O’Neil, Travis ; Chiang, Yi-Chen ; Joo, Yong Lak</creatorcontrib><description>Lithium–sulfur batteries are one of the most promising energy storage technologies to replace commercial Li-ion batteries due to 5-fold higher theoretical energy density, and lower cost. However, due to certain limitations, the technology is not ready to be deployed. To overcome some of these, scientists have been extensively employing graphene oxide (GO) or graphene material to improve the electrochemical performance. In this work, we present a unique, novel, and facile method to deposit the active materials onto an aluminum current collector by utilizing the van der Waals interaction between graphene oxide and aluminum via an air-controlled electrospray (ACES) process. The role of conventional polymer binder was replaced by graphene, resulting in a binder-free substrate. We demonstrated that the elimination of conventional polymer binder and graphene layers assembled via the ACES method resulted in higher capacity and retention, and offer almost 4 times higher capacity at 2C than the conventional slurry-cast system with polymer binder. This ACES technique offers potential for improving the overall energy density of sulfur and being adapted for commercialization in the energy storage industry.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.8b01694</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2019-01, Vol.2 (1), p.678-686</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-36461d41a964ffda1f639cf6997abe4817c1e0b7d3844eda2e62cbc75662413e3</citedby><cites>FETCH-LOGICAL-a314t-36461d41a964ffda1f639cf6997abe4817c1e0b7d3844eda2e62cbc75662413e3</cites><orcidid>0000-0002-4646-1625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.8b01694$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.8b01694$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Halim, Willy</creatorcontrib><creatorcontrib>Lee, Jin-Hong</creatorcontrib><creatorcontrib>Park, Sang-Mok</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Sarkar, Snatika</creatorcontrib><creatorcontrib>O’Neil, Travis</creatorcontrib><creatorcontrib>Chiang, Yi-Chen</creatorcontrib><creatorcontrib>Joo, Yong Lak</creatorcontrib><title>Directly Deposited Binder-Free Sulfur Electrode Enabled by Air-Controlled Electrospray Process</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Lithium–sulfur batteries are one of the most promising energy storage technologies to replace commercial Li-ion batteries due to 5-fold higher theoretical energy density, and lower cost. However, due to certain limitations, the technology is not ready to be deployed. To overcome some of these, scientists have been extensively employing graphene oxide (GO) or graphene material to improve the electrochemical performance. In this work, we present a unique, novel, and facile method to deposit the active materials onto an aluminum current collector by utilizing the van der Waals interaction between graphene oxide and aluminum via an air-controlled electrospray (ACES) process. The role of conventional polymer binder was replaced by graphene, resulting in a binder-free substrate. We demonstrated that the elimination of conventional polymer binder and graphene layers assembled via the ACES method resulted in higher capacity and retention, and offer almost 4 times higher capacity at 2C than the conventional slurry-cast system with polymer binder. This ACES technique offers potential for improving the overall energy density of sulfur and being adapted for commercialization in the energy storage industry.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1rwzAUxEVpoSHN2llzwa6erMjWmOarhUALbdcaWXoCB8cOUjz4v6-CPXTp9I7jd4_jCHkElgLj8KxN0HhKi4qBVOKGzPgyFwlTkt_-0fdkEcKRMQYKJFdqRn42tUdzaQa6wXMX6gta-lK3Fn2y84j0s29c7-m2iZDvLNJtq6smQtVAV7VP1l0b_ebqTEw4ez3QD98ZDOGB3DndBFxMd06-d9uv9WtyeN-_rVeHRGcgLkkmhQQrQCspnLManMyUcVKpXFcoCsgNIKtymxVCoNUcJTeVyZdScgEZZnOSjn9NLBA8uvLs65P2QwmsvA5UjgOV00Ax8DQGol8eu963sd5_8C-eCmkM</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Halim, Willy</creator><creator>Lee, Jin-Hong</creator><creator>Park, Sang-Mok</creator><creator>Zhang, Rui</creator><creator>Sarkar, Snatika</creator><creator>O’Neil, Travis</creator><creator>Chiang, Yi-Chen</creator><creator>Joo, Yong Lak</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4646-1625</orcidid></search><sort><creationdate>20190128</creationdate><title>Directly Deposited Binder-Free Sulfur Electrode Enabled by Air-Controlled Electrospray Process</title><author>Halim, Willy ; Lee, Jin-Hong ; Park, Sang-Mok ; Zhang, Rui ; Sarkar, Snatika ; O’Neil, Travis ; Chiang, Yi-Chen ; Joo, Yong Lak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-36461d41a964ffda1f639cf6997abe4817c1e0b7d3844eda2e62cbc75662413e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halim, Willy</creatorcontrib><creatorcontrib>Lee, Jin-Hong</creatorcontrib><creatorcontrib>Park, Sang-Mok</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Sarkar, Snatika</creatorcontrib><creatorcontrib>O’Neil, Travis</creatorcontrib><creatorcontrib>Chiang, Yi-Chen</creatorcontrib><creatorcontrib>Joo, Yong Lak</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halim, Willy</au><au>Lee, Jin-Hong</au><au>Park, Sang-Mok</au><au>Zhang, Rui</au><au>Sarkar, Snatika</au><au>O’Neil, Travis</au><au>Chiang, Yi-Chen</au><au>Joo, Yong Lak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directly Deposited Binder-Free Sulfur Electrode Enabled by Air-Controlled Electrospray Process</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2019-01-28</date><risdate>2019</risdate><volume>2</volume><issue>1</issue><spage>678</spage><epage>686</epage><pages>678-686</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Lithium–sulfur batteries are one of the most promising energy storage technologies to replace commercial Li-ion batteries due to 5-fold higher theoretical energy density, and lower cost. However, due to certain limitations, the technology is not ready to be deployed. To overcome some of these, scientists have been extensively employing graphene oxide (GO) or graphene material to improve the electrochemical performance. In this work, we present a unique, novel, and facile method to deposit the active materials onto an aluminum current collector by utilizing the van der Waals interaction between graphene oxide and aluminum via an air-controlled electrospray (ACES) process. The role of conventional polymer binder was replaced by graphene, resulting in a binder-free substrate. We demonstrated that the elimination of conventional polymer binder and graphene layers assembled via the ACES method resulted in higher capacity and retention, and offer almost 4 times higher capacity at 2C than the conventional slurry-cast system with polymer binder. This ACES technique offers potential for improving the overall energy density of sulfur and being adapted for commercialization in the energy storage industry.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.8b01694</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4646-1625</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2019-01, Vol.2 (1), p.678-686 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsaem_8b01694 |
source | American Chemical Society |
title | Directly Deposited Binder-Free Sulfur Electrode Enabled by Air-Controlled Electrospray Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directly%20Deposited%20Binder-Free%20Sulfur%20Electrode%20Enabled%20by%20Air-Controlled%20Electrospray%20Process&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Halim,%20Willy&rft.date=2019-01-28&rft.volume=2&rft.issue=1&rft.spage=678&rft.epage=686&rft.pages=678-686&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.8b01694&rft_dat=%3Cacs_cross%3Ec932668576%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |