Directly Deposited Binder-Free Sulfur Electrode Enabled by Air-Controlled Electrospray Process

Lithium–sulfur batteries are one of the most promising energy storage technologies to replace commercial Li-ion batteries due to 5-fold higher theoretical energy density, and lower cost. However, due to certain limitations, the technology is not ready to be deployed. To overcome some of these, scien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2019-01, Vol.2 (1), p.678-686
Hauptverfasser: Halim, Willy, Lee, Jin-Hong, Park, Sang-Mok, Zhang, Rui, Sarkar, Snatika, O’Neil, Travis, Chiang, Yi-Chen, Joo, Yong Lak
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 686
container_issue 1
container_start_page 678
container_title ACS applied energy materials
container_volume 2
creator Halim, Willy
Lee, Jin-Hong
Park, Sang-Mok
Zhang, Rui
Sarkar, Snatika
O’Neil, Travis
Chiang, Yi-Chen
Joo, Yong Lak
description Lithium–sulfur batteries are one of the most promising energy storage technologies to replace commercial Li-ion batteries due to 5-fold higher theoretical energy density, and lower cost. However, due to certain limitations, the technology is not ready to be deployed. To overcome some of these, scientists have been extensively employing graphene oxide (GO) or graphene material to improve the electrochemical performance. In this work, we present a unique, novel, and facile method to deposit the active materials onto an aluminum current collector by utilizing the van der Waals interaction between graphene oxide and aluminum via an air-controlled electrospray (ACES) process. The role of conventional polymer binder was replaced by graphene, resulting in a binder-free substrate. We demonstrated that the elimination of conventional polymer binder and graphene layers assembled via the ACES method resulted in higher capacity and retention, and offer almost 4 times higher capacity at 2C than the conventional slurry-cast system with polymer binder. This ACES technique offers potential for improving the overall energy density of sulfur and being adapted for commercialization in the energy storage industry.
doi_str_mv 10.1021/acsaem.8b01694
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_8b01694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c932668576</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-36461d41a964ffda1f639cf6997abe4817c1e0b7d3844eda2e62cbc75662413e3</originalsourceid><addsrcrecordid>eNp1kL1rwzAUxEVpoSHN2llzwa6erMjWmOarhUALbdcaWXoCB8cOUjz4v6-CPXTp9I7jd4_jCHkElgLj8KxN0HhKi4qBVOKGzPgyFwlTkt_-0fdkEcKRMQYKJFdqRn42tUdzaQa6wXMX6gta-lK3Fn2y84j0s29c7-m2iZDvLNJtq6smQtVAV7VP1l0b_ebqTEw4ez3QD98ZDOGB3DndBFxMd06-d9uv9WtyeN-_rVeHRGcgLkkmhQQrQCspnLManMyUcVKpXFcoCsgNIKtymxVCoNUcJTeVyZdScgEZZnOSjn9NLBA8uvLs65P2QwmsvA5UjgOV00Ax8DQGol8eu963sd5_8C-eCmkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Directly Deposited Binder-Free Sulfur Electrode Enabled by Air-Controlled Electrospray Process</title><source>American Chemical Society</source><creator>Halim, Willy ; Lee, Jin-Hong ; Park, Sang-Mok ; Zhang, Rui ; Sarkar, Snatika ; O’Neil, Travis ; Chiang, Yi-Chen ; Joo, Yong Lak</creator><creatorcontrib>Halim, Willy ; Lee, Jin-Hong ; Park, Sang-Mok ; Zhang, Rui ; Sarkar, Snatika ; O’Neil, Travis ; Chiang, Yi-Chen ; Joo, Yong Lak</creatorcontrib><description>Lithium–sulfur batteries are one of the most promising energy storage technologies to replace commercial Li-ion batteries due to 5-fold higher theoretical energy density, and lower cost. However, due to certain limitations, the technology is not ready to be deployed. To overcome some of these, scientists have been extensively employing graphene oxide (GO) or graphene material to improve the electrochemical performance. In this work, we present a unique, novel, and facile method to deposit the active materials onto an aluminum current collector by utilizing the van der Waals interaction between graphene oxide and aluminum via an air-controlled electrospray (ACES) process. The role of conventional polymer binder was replaced by graphene, resulting in a binder-free substrate. We demonstrated that the elimination of conventional polymer binder and graphene layers assembled via the ACES method resulted in higher capacity and retention, and offer almost 4 times higher capacity at 2C than the conventional slurry-cast system with polymer binder. This ACES technique offers potential for improving the overall energy density of sulfur and being adapted for commercialization in the energy storage industry.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.8b01694</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2019-01, Vol.2 (1), p.678-686</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-36461d41a964ffda1f639cf6997abe4817c1e0b7d3844eda2e62cbc75662413e3</citedby><cites>FETCH-LOGICAL-a314t-36461d41a964ffda1f639cf6997abe4817c1e0b7d3844eda2e62cbc75662413e3</cites><orcidid>0000-0002-4646-1625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.8b01694$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.8b01694$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Halim, Willy</creatorcontrib><creatorcontrib>Lee, Jin-Hong</creatorcontrib><creatorcontrib>Park, Sang-Mok</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Sarkar, Snatika</creatorcontrib><creatorcontrib>O’Neil, Travis</creatorcontrib><creatorcontrib>Chiang, Yi-Chen</creatorcontrib><creatorcontrib>Joo, Yong Lak</creatorcontrib><title>Directly Deposited Binder-Free Sulfur Electrode Enabled by Air-Controlled Electrospray Process</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Lithium–sulfur batteries are one of the most promising energy storage technologies to replace commercial Li-ion batteries due to 5-fold higher theoretical energy density, and lower cost. However, due to certain limitations, the technology is not ready to be deployed. To overcome some of these, scientists have been extensively employing graphene oxide (GO) or graphene material to improve the electrochemical performance. In this work, we present a unique, novel, and facile method to deposit the active materials onto an aluminum current collector by utilizing the van der Waals interaction between graphene oxide and aluminum via an air-controlled electrospray (ACES) process. The role of conventional polymer binder was replaced by graphene, resulting in a binder-free substrate. We demonstrated that the elimination of conventional polymer binder and graphene layers assembled via the ACES method resulted in higher capacity and retention, and offer almost 4 times higher capacity at 2C than the conventional slurry-cast system with polymer binder. This ACES technique offers potential for improving the overall energy density of sulfur and being adapted for commercialization in the energy storage industry.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1rwzAUxEVpoSHN2llzwa6erMjWmOarhUALbdcaWXoCB8cOUjz4v6-CPXTp9I7jd4_jCHkElgLj8KxN0HhKi4qBVOKGzPgyFwlTkt_-0fdkEcKRMQYKJFdqRn42tUdzaQa6wXMX6gta-lK3Fn2y84j0s29c7-m2iZDvLNJtq6smQtVAV7VP1l0b_ebqTEw4ez3QD98ZDOGB3DndBFxMd06-d9uv9WtyeN-_rVeHRGcgLkkmhQQrQCspnLManMyUcVKpXFcoCsgNIKtymxVCoNUcJTeVyZdScgEZZnOSjn9NLBA8uvLs65P2QwmsvA5UjgOV00Ax8DQGol8eu963sd5_8C-eCmkM</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Halim, Willy</creator><creator>Lee, Jin-Hong</creator><creator>Park, Sang-Mok</creator><creator>Zhang, Rui</creator><creator>Sarkar, Snatika</creator><creator>O’Neil, Travis</creator><creator>Chiang, Yi-Chen</creator><creator>Joo, Yong Lak</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4646-1625</orcidid></search><sort><creationdate>20190128</creationdate><title>Directly Deposited Binder-Free Sulfur Electrode Enabled by Air-Controlled Electrospray Process</title><author>Halim, Willy ; Lee, Jin-Hong ; Park, Sang-Mok ; Zhang, Rui ; Sarkar, Snatika ; O’Neil, Travis ; Chiang, Yi-Chen ; Joo, Yong Lak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-36461d41a964ffda1f639cf6997abe4817c1e0b7d3844eda2e62cbc75662413e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halim, Willy</creatorcontrib><creatorcontrib>Lee, Jin-Hong</creatorcontrib><creatorcontrib>Park, Sang-Mok</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Sarkar, Snatika</creatorcontrib><creatorcontrib>O’Neil, Travis</creatorcontrib><creatorcontrib>Chiang, Yi-Chen</creatorcontrib><creatorcontrib>Joo, Yong Lak</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halim, Willy</au><au>Lee, Jin-Hong</au><au>Park, Sang-Mok</au><au>Zhang, Rui</au><au>Sarkar, Snatika</au><au>O’Neil, Travis</au><au>Chiang, Yi-Chen</au><au>Joo, Yong Lak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directly Deposited Binder-Free Sulfur Electrode Enabled by Air-Controlled Electrospray Process</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2019-01-28</date><risdate>2019</risdate><volume>2</volume><issue>1</issue><spage>678</spage><epage>686</epage><pages>678-686</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Lithium–sulfur batteries are one of the most promising energy storage technologies to replace commercial Li-ion batteries due to 5-fold higher theoretical energy density, and lower cost. However, due to certain limitations, the technology is not ready to be deployed. To overcome some of these, scientists have been extensively employing graphene oxide (GO) or graphene material to improve the electrochemical performance. In this work, we present a unique, novel, and facile method to deposit the active materials onto an aluminum current collector by utilizing the van der Waals interaction between graphene oxide and aluminum via an air-controlled electrospray (ACES) process. The role of conventional polymer binder was replaced by graphene, resulting in a binder-free substrate. We demonstrated that the elimination of conventional polymer binder and graphene layers assembled via the ACES method resulted in higher capacity and retention, and offer almost 4 times higher capacity at 2C than the conventional slurry-cast system with polymer binder. This ACES technique offers potential for improving the overall energy density of sulfur and being adapted for commercialization in the energy storage industry.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.8b01694</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4646-1625</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2019-01, Vol.2 (1), p.678-686
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_8b01694
source American Chemical Society
title Directly Deposited Binder-Free Sulfur Electrode Enabled by Air-Controlled Electrospray Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directly%20Deposited%20Binder-Free%20Sulfur%20Electrode%20Enabled%20by%20Air-Controlled%20Electrospray%20Process&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Halim,%20Willy&rft.date=2019-01-28&rft.volume=2&rft.issue=1&rft.spage=678&rft.epage=686&rft.pages=678-686&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.8b01694&rft_dat=%3Cacs_cross%3Ec932668576%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true