Sulfur-Doped Carbon Nanotemplates for Sodium Metal Anodes

Sodium metal is a good candidate as an anode for a large-scale energy storage device because of the abundance of sodium resources and its high theoretical capacity (∼1166 mA h g–1) in a low redox potential (−2.71 V versus the standard hydrogen electrode). In this study, we report effects of sulfur d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2018-05, Vol.1 (5), p.1846-1852
Hauptverfasser: Yoon, Hyeon Ji, Hong, Seung Ki, Lee, Min Eui, Hwang, Junyeon, Jin, Hyoung-Joon, Yun, Young Soo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sodium metal is a good candidate as an anode for a large-scale energy storage device because of the abundance of sodium resources and its high theoretical capacity (∼1166 mA h g–1) in a low redox potential (−2.71 V versus the standard hydrogen electrode). In this study, we report effects of sulfur doping on highly efficient macroporous catalytic carbon nanotemplates (MC-CNTs) for a metal anode. MC-CNTs resulted in reversible and stable sodium metal deposition/stripping cycling over ∼200 cycles, with average Coulombic efficiency (CE) of ∼99.7%. After heat treatment with elemental sulfur, the sulfur-doped MC-CNTs (S-MC-CNTs) showed significantly improved cycling performances over 2400 cycles, with average CEs of ∼99.8%. In addition, very small nucleation overpotentials from ∼6 to ∼14 mV were achieved at current densities from 0.5 to 8 mA cm–2, indicating highly efficient catalytic effects for sodium metal nucleation and high rate performances of S-MC-CNTs. These results provide insight regarding a simple but feasible strategy based on bioabundant precursors and an easy process to design a high-performance metal anode.
ISSN:2574-0962
2574-0962
DOI:10.1021/acsaem.8b00258