Sulfur-Doped Carbon Nanotemplates for Sodium Metal Anodes
Sodium metal is a good candidate as an anode for a large-scale energy storage device because of the abundance of sodium resources and its high theoretical capacity (∼1166 mA h g–1) in a low redox potential (−2.71 V versus the standard hydrogen electrode). In this study, we report effects of sulfur d...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2018-05, Vol.1 (5), p.1846-1852 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sodium metal is a good candidate as an anode for a large-scale energy storage device because of the abundance of sodium resources and its high theoretical capacity (∼1166 mA h g–1) in a low redox potential (−2.71 V versus the standard hydrogen electrode). In this study, we report effects of sulfur doping on highly efficient macroporous catalytic carbon nanotemplates (MC-CNTs) for a metal anode. MC-CNTs resulted in reversible and stable sodium metal deposition/stripping cycling over ∼200 cycles, with average Coulombic efficiency (CE) of ∼99.7%. After heat treatment with elemental sulfur, the sulfur-doped MC-CNTs (S-MC-CNTs) showed significantly improved cycling performances over 2400 cycles, with average CEs of ∼99.8%. In addition, very small nucleation overpotentials from ∼6 to ∼14 mV were achieved at current densities from 0.5 to 8 mA cm–2, indicating highly efficient catalytic effects for sodium metal nucleation and high rate performances of S-MC-CNTs. These results provide insight regarding a simple but feasible strategy based on bioabundant precursors and an easy process to design a high-performance metal anode. |
---|---|
ISSN: | 2574-0962 2574-0962 |
DOI: | 10.1021/acsaem.8b00258 |