Effects of Cyclic Tetrapyrrole Rings of Aggregate-Forming Chlorophyll Derivatives as Hole-Transporting Materials on Performance of Perovskite Solar Cells
Organic hole-transporting materials (HTMs) are essential components of high-performance perovskite solar cells (PSCs). Three zinc-coordinated chlorophyll derivatives with bacteriochlorin, chlorin, and porphyrin macrocycles, namely, ZnBChl, ZnChl, and ZnPor, respectively, were newly synthesized and e...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2018-01, Vol.1 (1), p.9-16 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 1 |
container_start_page | 9 |
container_title | ACS applied energy materials |
container_volume | 1 |
creator | Li, Mengzhen Li, Na Hu, Weidong Chen, Gang Sasaki, Shin-ichi Sakai, Kotowa Ikeuchi, Toshitaka Miyasaka, Tsutomu Tamiaki, Hitoshi Wang, Xiao-Feng |
description | Organic hole-transporting materials (HTMs) are essential components of high-performance perovskite solar cells (PSCs). Three zinc-coordinated chlorophyll derivatives with bacteriochlorin, chlorin, and porphyrin macrocycles, namely, ZnBChl, ZnChl, and ZnPor, respectively, were newly synthesized and employed as HTMs in PSCs. The difference in the π backbones of these HTMs causes differences in their photophysical properties, and thus different hole-extraction abilities, as revealed by steady-state photoluminescence spectra. The power conversion efficiencies (PCEs) of PSCs with a typical mesoporous structure, fluorine-doped tin oxide/compact TiO2/mesoporous TiO2/CH3NH3PbI3/HTM/Ag, are 8.26%, 11.88%, and 0.68% for ZnBChl, ZnChl, and ZnPor, respectively. The small PCE of the ZnPor-based PSC is partially attributed to the small energy gap of the highest occupied molecular orbital (HOMO) levels between ZnPor and CH3NH3PbI3 perovskite. Therefore, we increased this energy gap slightly by shifting the HOMO level of CH3NH3PbI3 perovskite downward by incorporating formamidinium and bromide ions into the crystal lattice of CH3NH3PbI3. As a result, the PCE of the ZnPor-based PSC improved to 4.04%, and it exhibited a clearly normal current–voltage curve, indicating better energy alignment between ZnPor and the modified perovskite. In addition, the barriers both in the perovskite/ZnPor interface and in the ZnPor layer originated from the delocalization of π-electrons on the symmetric aggregates determine the low PCE of ZnPor-based PSCs; this was deduced from measurements of atomic force microscope, ultraviolet photoelectron spectroscopy, and the electric impedance spectroscopy. |
doi_str_mv | 10.1021/acsaem.7b00018 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_7b00018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c279724887</sourcerecordid><originalsourceid>FETCH-LOGICAL-a340t-289da1b3ebf0b4e2961d377d82463677240e6b50c18c7764fe152d416bf30f003</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhSMEElXpyuwZKcV2UrsZq9BSpCIQlDlykus0xY2j61Apj8Lb4tAOLEz373xHVycIbhmdMsrZvSqcgsNU5pRSNr8IRnwm45Amgl_-6a-DiXP7QZIwwZNkFHwvtYaic8RqkvaFqQuyhQ5V2yNaA-Stbqrf46KqECrVQbiyePBbku6MRdvuemPIA2B9VF19BEeUI2uPhltUjWstdoP42ZNYK-O9GvIKqL2JagoYrP1oj-6z7oC8W6OQpGCMuwmutNfD5FzHwcdquU3X4ebl8SldbEIVxbQL-TwpFcsjyDXNY-CJYGUkZTnnsYiElDymIPIZLdi8kFLEGtiMlzETuY6opjQaB9OTb4HWOQSdtVgfFPYZo9mQbXbKNjtn64G7E-D32d5-YePf-0_8A2YBfno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of Cyclic Tetrapyrrole Rings of Aggregate-Forming Chlorophyll Derivatives as Hole-Transporting Materials on Performance of Perovskite Solar Cells</title><source>ACS Publications</source><creator>Li, Mengzhen ; Li, Na ; Hu, Weidong ; Chen, Gang ; Sasaki, Shin-ichi ; Sakai, Kotowa ; Ikeuchi, Toshitaka ; Miyasaka, Tsutomu ; Tamiaki, Hitoshi ; Wang, Xiao-Feng</creator><creatorcontrib>Li, Mengzhen ; Li, Na ; Hu, Weidong ; Chen, Gang ; Sasaki, Shin-ichi ; Sakai, Kotowa ; Ikeuchi, Toshitaka ; Miyasaka, Tsutomu ; Tamiaki, Hitoshi ; Wang, Xiao-Feng</creatorcontrib><description>Organic hole-transporting materials (HTMs) are essential components of high-performance perovskite solar cells (PSCs). Three zinc-coordinated chlorophyll derivatives with bacteriochlorin, chlorin, and porphyrin macrocycles, namely, ZnBChl, ZnChl, and ZnPor, respectively, were newly synthesized and employed as HTMs in PSCs. The difference in the π backbones of these HTMs causes differences in their photophysical properties, and thus different hole-extraction abilities, as revealed by steady-state photoluminescence spectra. The power conversion efficiencies (PCEs) of PSCs with a typical mesoporous structure, fluorine-doped tin oxide/compact TiO2/mesoporous TiO2/CH3NH3PbI3/HTM/Ag, are 8.26%, 11.88%, and 0.68% for ZnBChl, ZnChl, and ZnPor, respectively. The small PCE of the ZnPor-based PSC is partially attributed to the small energy gap of the highest occupied molecular orbital (HOMO) levels between ZnPor and CH3NH3PbI3 perovskite. Therefore, we increased this energy gap slightly by shifting the HOMO level of CH3NH3PbI3 perovskite downward by incorporating formamidinium and bromide ions into the crystal lattice of CH3NH3PbI3. As a result, the PCE of the ZnPor-based PSC improved to 4.04%, and it exhibited a clearly normal current–voltage curve, indicating better energy alignment between ZnPor and the modified perovskite. In addition, the barriers both in the perovskite/ZnPor interface and in the ZnPor layer originated from the delocalization of π-electrons on the symmetric aggregates determine the low PCE of ZnPor-based PSCs; this was deduced from measurements of atomic force microscope, ultraviolet photoelectron spectroscopy, and the electric impedance spectroscopy.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.7b00018</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2018-01, Vol.1 (1), p.9-16</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a340t-289da1b3ebf0b4e2961d377d82463677240e6b50c18c7764fe152d416bf30f003</citedby><cites>FETCH-LOGICAL-a340t-289da1b3ebf0b4e2961d377d82463677240e6b50c18c7764fe152d416bf30f003</cites><orcidid>0000-0003-4797-0349 ; 0000-0002-8388-7019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.7b00018$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.7b00018$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Li, Mengzhen</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Hu, Weidong</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Sasaki, Shin-ichi</creatorcontrib><creatorcontrib>Sakai, Kotowa</creatorcontrib><creatorcontrib>Ikeuchi, Toshitaka</creatorcontrib><creatorcontrib>Miyasaka, Tsutomu</creatorcontrib><creatorcontrib>Tamiaki, Hitoshi</creatorcontrib><creatorcontrib>Wang, Xiao-Feng</creatorcontrib><title>Effects of Cyclic Tetrapyrrole Rings of Aggregate-Forming Chlorophyll Derivatives as Hole-Transporting Materials on Performance of Perovskite Solar Cells</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Organic hole-transporting materials (HTMs) are essential components of high-performance perovskite solar cells (PSCs). Three zinc-coordinated chlorophyll derivatives with bacteriochlorin, chlorin, and porphyrin macrocycles, namely, ZnBChl, ZnChl, and ZnPor, respectively, were newly synthesized and employed as HTMs in PSCs. The difference in the π backbones of these HTMs causes differences in their photophysical properties, and thus different hole-extraction abilities, as revealed by steady-state photoluminescence spectra. The power conversion efficiencies (PCEs) of PSCs with a typical mesoporous structure, fluorine-doped tin oxide/compact TiO2/mesoporous TiO2/CH3NH3PbI3/HTM/Ag, are 8.26%, 11.88%, and 0.68% for ZnBChl, ZnChl, and ZnPor, respectively. The small PCE of the ZnPor-based PSC is partially attributed to the small energy gap of the highest occupied molecular orbital (HOMO) levels between ZnPor and CH3NH3PbI3 perovskite. Therefore, we increased this energy gap slightly by shifting the HOMO level of CH3NH3PbI3 perovskite downward by incorporating formamidinium and bromide ions into the crystal lattice of CH3NH3PbI3. As a result, the PCE of the ZnPor-based PSC improved to 4.04%, and it exhibited a clearly normal current–voltage curve, indicating better energy alignment between ZnPor and the modified perovskite. In addition, the barriers both in the perovskite/ZnPor interface and in the ZnPor layer originated from the delocalization of π-electrons on the symmetric aggregates determine the low PCE of ZnPor-based PSCs; this was deduced from measurements of atomic force microscope, ultraviolet photoelectron spectroscopy, and the electric impedance spectroscopy.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhSMEElXpyuwZKcV2UrsZq9BSpCIQlDlykus0xY2j61Apj8Lb4tAOLEz373xHVycIbhmdMsrZvSqcgsNU5pRSNr8IRnwm45Amgl_-6a-DiXP7QZIwwZNkFHwvtYaic8RqkvaFqQuyhQ5V2yNaA-Stbqrf46KqECrVQbiyePBbku6MRdvuemPIA2B9VF19BEeUI2uPhltUjWstdoP42ZNYK-O9GvIKqL2JagoYrP1oj-6z7oC8W6OQpGCMuwmutNfD5FzHwcdquU3X4ebl8SldbEIVxbQL-TwpFcsjyDXNY-CJYGUkZTnnsYiElDymIPIZLdi8kFLEGtiMlzETuY6opjQaB9OTb4HWOQSdtVgfFPYZo9mQbXbKNjtn64G7E-D32d5-YePf-0_8A2YBfno</recordid><startdate>20180122</startdate><enddate>20180122</enddate><creator>Li, Mengzhen</creator><creator>Li, Na</creator><creator>Hu, Weidong</creator><creator>Chen, Gang</creator><creator>Sasaki, Shin-ichi</creator><creator>Sakai, Kotowa</creator><creator>Ikeuchi, Toshitaka</creator><creator>Miyasaka, Tsutomu</creator><creator>Tamiaki, Hitoshi</creator><creator>Wang, Xiao-Feng</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4797-0349</orcidid><orcidid>https://orcid.org/0000-0002-8388-7019</orcidid></search><sort><creationdate>20180122</creationdate><title>Effects of Cyclic Tetrapyrrole Rings of Aggregate-Forming Chlorophyll Derivatives as Hole-Transporting Materials on Performance of Perovskite Solar Cells</title><author>Li, Mengzhen ; Li, Na ; Hu, Weidong ; Chen, Gang ; Sasaki, Shin-ichi ; Sakai, Kotowa ; Ikeuchi, Toshitaka ; Miyasaka, Tsutomu ; Tamiaki, Hitoshi ; Wang, Xiao-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a340t-289da1b3ebf0b4e2961d377d82463677240e6b50c18c7764fe152d416bf30f003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mengzhen</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Hu, Weidong</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Sasaki, Shin-ichi</creatorcontrib><creatorcontrib>Sakai, Kotowa</creatorcontrib><creatorcontrib>Ikeuchi, Toshitaka</creatorcontrib><creatorcontrib>Miyasaka, Tsutomu</creatorcontrib><creatorcontrib>Tamiaki, Hitoshi</creatorcontrib><creatorcontrib>Wang, Xiao-Feng</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mengzhen</au><au>Li, Na</au><au>Hu, Weidong</au><au>Chen, Gang</au><au>Sasaki, Shin-ichi</au><au>Sakai, Kotowa</au><au>Ikeuchi, Toshitaka</au><au>Miyasaka, Tsutomu</au><au>Tamiaki, Hitoshi</au><au>Wang, Xiao-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Cyclic Tetrapyrrole Rings of Aggregate-Forming Chlorophyll Derivatives as Hole-Transporting Materials on Performance of Perovskite Solar Cells</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2018-01-22</date><risdate>2018</risdate><volume>1</volume><issue>1</issue><spage>9</spage><epage>16</epage><pages>9-16</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Organic hole-transporting materials (HTMs) are essential components of high-performance perovskite solar cells (PSCs). Three zinc-coordinated chlorophyll derivatives with bacteriochlorin, chlorin, and porphyrin macrocycles, namely, ZnBChl, ZnChl, and ZnPor, respectively, were newly synthesized and employed as HTMs in PSCs. The difference in the π backbones of these HTMs causes differences in their photophysical properties, and thus different hole-extraction abilities, as revealed by steady-state photoluminescence spectra. The power conversion efficiencies (PCEs) of PSCs with a typical mesoporous structure, fluorine-doped tin oxide/compact TiO2/mesoporous TiO2/CH3NH3PbI3/HTM/Ag, are 8.26%, 11.88%, and 0.68% for ZnBChl, ZnChl, and ZnPor, respectively. The small PCE of the ZnPor-based PSC is partially attributed to the small energy gap of the highest occupied molecular orbital (HOMO) levels between ZnPor and CH3NH3PbI3 perovskite. Therefore, we increased this energy gap slightly by shifting the HOMO level of CH3NH3PbI3 perovskite downward by incorporating formamidinium and bromide ions into the crystal lattice of CH3NH3PbI3. As a result, the PCE of the ZnPor-based PSC improved to 4.04%, and it exhibited a clearly normal current–voltage curve, indicating better energy alignment between ZnPor and the modified perovskite. In addition, the barriers both in the perovskite/ZnPor interface and in the ZnPor layer originated from the delocalization of π-electrons on the symmetric aggregates determine the low PCE of ZnPor-based PSCs; this was deduced from measurements of atomic force microscope, ultraviolet photoelectron spectroscopy, and the electric impedance spectroscopy.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.7b00018</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4797-0349</orcidid><orcidid>https://orcid.org/0000-0002-8388-7019</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2018-01, Vol.1 (1), p.9-16 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsaem_7b00018 |
source | ACS Publications |
title | Effects of Cyclic Tetrapyrrole Rings of Aggregate-Forming Chlorophyll Derivatives as Hole-Transporting Materials on Performance of Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Cyclic%20Tetrapyrrole%20Rings%20of%20Aggregate-Forming%20Chlorophyll%20Derivatives%20as%20Hole-Transporting%20Materials%20on%20Performance%20of%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Li,%20Mengzhen&rft.date=2018-01-22&rft.volume=1&rft.issue=1&rft.spage=9&rft.epage=16&rft.pages=9-16&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.7b00018&rft_dat=%3Cacs_cross%3Ec279724887%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |